Analytical and Bioanalytical Chemistry

, Volume 409, Issue 14, pp 3611–3621 | Cite as

A fully validated bioanalytical method using an UHPLC–MS/MS system for quantification of DNA and RNA oxidative stress biomarkers

  • Barbora Cervinkova
  • Lenka Kujovska Krcmova
  • Veronika Sestakova
  • Dagmar Solichova
  • Petr Solich
Research Paper


A new, rapid and effective ultra-high-performance liquid chromatography method with mass spectrometry detection is described for the separation and quantification of 8-hydroxy-2-deoxyguanosine, 8-hydroxyguanosine and creatinine in human urine. The present study uses an isotope-labelled internal standard ([15N]5-8-hydroxy-2-deoxyguanosine), a BIO core-shell stationary phase and an isocratic elution of methanol and water. Sample preparation of human urine was performed by solid-phase extraction (SPE) on Oasis HLB cartridges with methanol/water 50:50 (v/v) elution. Extraction recoveries ranged from 98.1% to 109.2%. Biological extracts showed high short-term stability. Several aspects of this procedure make it suitable for both clinical and research purposes: a short elution time of less than 3.2 min, an intra-day precision of 2.5–8.9%, an inter-day precision of 3.4–8.7% and low limits of quantification (27.7 nM for 8-hydroxyguanosine, 6.0 nM for 8-hydroxy-2-deoxyguanosine). Finally, simultaneous analysis of DNA and RNA oxidative stress biomarkers is a useful tool for monitoring disease progression in neurodegenerative disorders and cancer.

Graphical abstract

UHPLC-MS/MS analysis of DNA and RNA oxidative stress biomarkers


8-Hydroxy-2-deoxyguanosine 8-Hydroxyguanosine Creatinine Cancer UHPLC–MS/MS Human urine 



This work was supported by projects SVV 260 412, MH CZ - DRO (UHHK, 00179906) and Progress Q42.

Compliance with ethical standards

This study has been approved by the University Hospital Hradec Kralove ethics committee 201606 S21P and has been performed in accordance with the ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2017_301_MOESM1_ESM.pdf (127 kb)
ESM 1 (PDF 78 kb)


  1. 1.
    Halliwell B. Why and how should we measure oxidative DNA damage in nutritional studies? How far have we come? Am J Clin Nutr. 2000;72:1082–7.Google Scholar
  2. 2.
    Bohoyo-Gil D, Dominguez-Valhondo D, Garcia-Parra JJ, Gonzalez-Gomez D. UHPLC as a suitable methodology for the analysis of carotenoids in food matrix. Eur Food Res Technol. 2012;235:1055–61. doi: 10.1007/s00217-012-1838-0.CrossRefGoogle Scholar
  3. 3.
    Nunomura A, Perry G, Pappolla MA, Wade R, Hirai K, Chiba S, et al. RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci. 1999;19:1959–64.Google Scholar
  4. 4.
    Loft S, Olsen A, Moller P, Poulsen HE, Tjonneland A. Association between 8-oxo-7,8-dihydro-2′-deoxyguanosine excretion and risk of postmenopausal breast cancer: nested case-control study. Cancer Epidemiol Biomarkers Prev. 2013;22:1289–96. doi: 10.1158/1055-9965.EPI-13-0229.CrossRefGoogle Scholar
  5. 5.
    Li D, Zhang W, Zhu J, Chang P, Sahin A, Singletary E, et al. Oxidative DNA damage and 8-hydroxy-2-deoxyguanosine DNA glycosylase/apurinic lyase in human breast cancer. Mol Carcinog. 2001;31:214–23. doi: 10.1002/mc.1056.CrossRefGoogle Scholar
  6. 6.
    Zhang S-W, Xing J, Cai L-S, Wu C-Y. Molecularly imprinted monolith in-tube solid-phase microextraction coupled with HPLC/UV detection for determination of 8-hydroxy-2′-deoxyguanosine in urine. Anal Bioanal Chem. 2009;395:479–87. doi: 10.1007/s00216-009-2964-9.CrossRefGoogle Scholar
  7. 7.
    Borrego S, Vazquez A, Dasí F, Cerdá C, Iradi A, Tormos C, et al. Oxidative stress and DNA damage in human gastric carcinoma: 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG) as a possible tumor marker. Int J Mol Sci. 2013;14:3467–86. doi: 10.3390/ijms14023467.CrossRefGoogle Scholar
  8. 8.
    Khadem-Ansari M-H, Shahsavari Z, Rasmi Y, Mahmoodlo R. Elevated levels of urinary 8-hydroxy-2′-deoxyguanosine and 8-isoprostane in esophageal squamous cell carcinoma. J Carcinog. 2011;10:14. doi: 10.4103/1477-3163.79683.CrossRefGoogle Scholar
  9. 9.
    Honda M, Yamada Y, Tomonaga M, Ichinose H, Kamihira S. Correlation of urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG), a biomarker of oxidative DNA damage, and clinical features of hematological disorders: a pilot study. Leuk Res. 2000;24:461–8. doi: 10.1016/S0145-2126(00)00006-0.CrossRefGoogle Scholar
  10. 10.
    Suzuki S, Shishido T, Ishino M, Katoh S, Sasaki T, Nishiyama S, et al. 8-Hydroxy-2′-deoxyguanosine is a prognostic mediator for cardiac event. Eur J Clin Investig. 2011;41:759–66. doi: 10.1111/j.1365-2362.2010.02465.x.CrossRefGoogle Scholar
  11. 11.
    Nakajima H, Unoda K-I, Ito T, Kitaoka H, Kimura F, Hanafusa T. The relation of urinary 8-OHdG, a marker of oxidative stress to DNA, and clinical outcomes for ischemic stroke. Open Neurol J. 2012;6:51–7. doi: 10.2174/1874205X01206010051.CrossRefGoogle Scholar
  12. 12.
    Forlenza MJ, Miller GE. Increased serum levels of 8-hydroxy-2′-deoxyguanosine in clinical depression. Psychosom Med. 2006;68:1–7. doi: 10.1097/01.psy.0000195780.37277.2a.CrossRefGoogle Scholar
  13. 13.
    Abe T, Isobe C, Murata T, Sato C, Tohgi H. Alteration of 8-hydroxyguanosine concentrations in the cerebrospinal fluid and serum from patients with Parkinson’s disease. Neurosci Lett. 2003;336:105–8. doi: 10.1016/S0304-3940(02)01259-4.CrossRefGoogle Scholar
  14. 14.
    Fagan AM, Perrin RJ. Upcoming candidate cerebrospinal fluid biomarkers of Alzheimer’s disease. Biomark Med. 2012;6:455–76. doi: 10.2217/bmm.12.42.CrossRefGoogle Scholar
  15. 15.
    Cooke MS, Barregard L, Mistry V, Potdar N, Rozalski R, Gackowski D, et al. Interlaboratory comparison of methodologies for the measurement of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine. Biomarkers. 2009;14:103–10. doi: 10.1080/13547500802706012.CrossRefGoogle Scholar
  16. 16.
    Malayappan B, Garrett TJ, Segal M, Leeuwenburgh C. Urinary analysis of 8-oxoguanine, 8-oxoguanosine, fapy-guanine and 8-oxo-2′-deoxyguanosine by high-performance liquid chromatography–electrospray tandem mass spectrometry as a measure of oxidative stress. J Chromatogr A. 2007;1167:54–62. doi: 10.1016/j.chroma.2007.08.024.CrossRefGoogle Scholar
  17. 17.
    Pelclova D, Zdimal V, Kacer P, Fenclova Z, Vlckova S, Syslova K, et al. Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production. J Breath Res. 2016;10:16004. doi: 10.1088/1752-7155/10/1/016004.CrossRefGoogle Scholar
  18. 18.
    Rodríguez-Gonzalo E, Herrero-Herrero L, García-Gómez D. Development, validation and application of a fast analytical methodology for the simultaneous determination of DNA- and RNA-derived urinary nucleosides by liquid chromatography coupled to tandem mass spectrometry. J Chromatogr B. 2016;1019:132–9. doi: 10.1016/j.jchromb.2015.10.044.CrossRefGoogle Scholar
  19. 19.
    Ren L, Fang J, Liu G, Zhang J, Zhu Z, Liu H, et al. Simultaneous determination of urinary parabens, bisphenol A, triclosan, and 8-hydroxy-2′-deoxyguanosine by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Anal Bioanal Chem. 2016;408:2621–9. doi: 10.1007/s00216-016-9372-8.CrossRefGoogle Scholar
  20. 20.
    Wang C-J, Yang N-H, Chang C-C, Liou S-H, Lee H-L. Rapid and simple one-step membrane extraction for the determination of 8-hydroxy-2′-deoxyguanosine in human plasma by a combination of on-line solid phase extraction and LC–MS/MS. J Chromatogr B. 2011;879:3538–43. doi: 10.1016/j.jchromb.2011.09.038.CrossRefGoogle Scholar
  21. 21.
    Hosozumi C, Toriba A, Chuesaard T, Kameda T, Tang N, Hayakawa K. Analysis of 8-hydroxy-2′-deoxyguanosine in human urine using hydrophilic interaction chromatography with tandem mass spectrometry. J Chromatogr B. 2012;893–894:173–6. doi: 10.1016/j.jchromb.2012.02.043.CrossRefGoogle Scholar
  22. 22.
    Zhang S, Song X, Zhang W, Luo N, Cai L. Determination of low urinary 8-hydroxy-2′-deoxyguanosine excretion with capillary electrophoresis and molecularly imprinted monolith solid phase microextraction. Sci Total Environ. 2013;450–451:266–70. doi: 10.1016/j.scitotenv.2013.02.025.CrossRefGoogle Scholar
  23. 23.
    Kataoka H, Mizuno K, Oda E, Saito A. Determination of the oxidative stress biomarker urinary 8-hydroxy-2′-deoxyguanosine by automated on-line in-tube solid-phase microextraction coupled with liquid chromatography–tandem mass spectrometry. J Chromatogr B. 2016;1019:140–6. doi: 10.1016/j.jchromb.2015.08.028.CrossRefGoogle Scholar
  24. 24.
    Hu J, Zhang W, Ma H, Cai Y, Sheng G, Fu J. Simultaneous determination of 8-hydroxy-2′-deoxyguanosine and 5-methyl-2′-deoxycytidine in DNA sample by high performance liquid chromatography/positive electrospray ionization tandem mass spectrometry. J Chromatogr B. 2010;878:2765–9. doi: 10.1016/j.jchromb.2010.08.017.CrossRefGoogle Scholar
  25. 25.
    Syslová K, Kačer P, Kuzma M, Pankrácová A, Fenclová Z, Vlčková Š, et al. LC-ESI-MS/MS method for oxidative stress multimarker screening in the exhaled breath condensate of asbestosis/silicosis patients. J Breath Res. 2010;4:17104. doi: 10.1088/1752-7155/4/1/017104.CrossRefGoogle Scholar
  26. 26.
    European Medicines Agency. Guideline on bioanalytical method validation online available from 21 July 2011 Accessed 18 March 2017.
  27. 27.
    Food and Drug Administration. Guidance for industry: bioanalytical method validation online available from September 2013 Accessed 18 March 2017.
  28. 28.
    Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC−MS/MS. Anal Chem. 2003;75:3019–30. doi: 10.1021/AC020361S.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Barbora Cervinkova
    • 1
    • 2
  • Lenka Kujovska Krcmova
    • 1
    • 2
  • Veronika Sestakova
    • 1
  • Dagmar Solichova
    • 2
  • Petr Solich
    • 1
  1. 1.Department of Analytical Chemistry, Faculty of PharmacyCharles UniversityHradec KraloveCzech Republic
  2. 2.3rd Internal Gerontometabolic ClinicUniversity HospitalHradec KraloveCzech Republic

Personalised recommendations