Analytical and Bioanalytical Chemistry

, Volume 409, Issue 14, pp 3587–3596 | Cite as

A column switching ultrahigh-performance liquid chromatography-tandem mass spectrometry method to determine anandamide and 2-arachidonoylglycerol in plasma samples

  • Camila Marchioni
  • Israel Donizeti de Souza
  • Caroline Fernandes Grecco
  • José Alexandre Crippa
  • Vitor Tumas
  • Maria Eugênia Costa Queiroz
Research Paper


This study reports a fast, sensitive, and selective column switching ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method to determine the endocannabinoids (eCBs), anandamide (AEA), and 2-arachidonoylglycerol (2-AG) in plasma samples. This bidimensional system used a restricted access media column (RP-8 ADS, 25 mm × 4 mm × 25 μM) in the first dimension and a core-shell Kinetex C18 (100 mm × 2, 1.7 mm × 1 μM) column in the second dimension, followed by detection in a mass spectrometer triple quadrupole (multiple reactions monitoring mode) operating in the positive mode. RP-8 ADS was used for trace enrichment of eCBs (reverse phase partitioning) and macromolecular matrix size exclusion; the core-shell column was used for the chromatographic separation. The column switching UHPLC-MS/MS method presented a linear range spanning from 0.1 ng mL−1 (LOQ) to 6 ng mL−1 for AEA and from 0.04 ng mL−1 (LOQ) to 10 ng mL−1 for 2-AG. Excluding the LLOQ values, the precision assays provided coefficients of variation lower than 8% and accuracy with relative standard error values lower than 14%. Neither carryover nor matrix effects were detected. This high-throughput column switching method compared to conventional methods is time saving as it involves fewer steps, consumes less solvent, and presents lower LLOQ. The column switching UHPLC-MS/MS method was successfully applied to determine AEA and 2-AG in plasma samples obtained from Alzheimer’s disease patients.

Graphical abstract

A column switching ultra high-performance liquid chromatography-tandem mass spectrometry method using RP-8 ADS column and core shell column to determine endocannabinoids in plasma samples


Column switching Liquid chromatography-tandem mass spectrometry Endocannabinoids Plasma samples 



The authors would like to acknowledge CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, process 2015/07619-1 and 2016/13639-8), and CNPq Brazil (Conselho Nacional de Desenvolvimento Científico e Tecnológico, process CNPq/MS/SCTIE/DECIT N° 26/2014 - Pesquisas sobre Distúrbios Neuropsiquiátricos; 466805/2014-4) for the financial support and fellowships.

Compliance with ethical standards

The samples were from plasma biobanking, and this study was part of a project approved by the Ethics Committee of the Ribeirão Preto Medical School Hospital in accordance with the ethical principles of the Declaration of Helsinki (permission number: 13478/2010), and all participants gave written informed consent to take part in the study.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Fagan SG, Campbell VA. The influence of cannabinoids on generic traits of neurodegeneration. Br J Pharmacol. 2014;171:1347–60. doi: 10.1111/bph.12492.CrossRefGoogle Scholar
  2. 2.
    Fernández-Ruiz J, Berrendero F, Hernández ML, Ramos JA. The endogenous cannabinoid system and brain development. Trends Neurosci. 2000;23:14–20. doi: 10.1016/S0166-2236(99)01491-5.CrossRefGoogle Scholar
  3. 3.
    Sergi M, Montesano C, Odoardi S, Mainero Rocca L, Fabrizi G, Compagnone D, Curini R. Micro extraction by packed sorbent coupled to liquid chromatography tandem mass spectrometry for the rapid and sensitive determination of cannabinoids in oral fluids. J Chromatogr A. 2013a;1301:139–46. doi: 10.1016/j.chroma.2013.05.072.CrossRefGoogle Scholar
  4. 4.
    Zoerner AA, Gutzki F, Batkai S, May M, Rakers C, Engeli S, Jordan J, Tsikas D. Quantification of endocannabinoids in biological systems by chromatography and mass spectrometry: a comprehensive review from an analytical and biological perspective. Biochim Biophys Acta - Mol Cell Biol Lipids. 2011;1811:706–23. doi: 10.1016/j.bbalip.2011.08.004.CrossRefGoogle Scholar
  5. 5.
    Pisani V, Moschella V, Bari M, Fezza F, Galati S, Bernardi G, Stanzione P, Pisani A, Maccarrone M. Dynamic changes of anandamide in the cerebrospinal fluid of Parkinson’s disease patients. Mov Disord. 2010;25:920–4. doi: 10.1002/mds.23014.CrossRefGoogle Scholar
  6. 6.
    Muguruza C, Lehtonen M, Aaltonen N, Morentin B, Meana JJ, Callado LF. Quantification of endocannabinoids in postmortem brain of schizophrenic subjects. Schizophr Res. 2013;148:145–50. doi: 10.1016/j.schres.2013.06.013.CrossRefGoogle Scholar
  7. 7.
    Pertwee RG. Cannabinoids and multiple sclerosis. Mol Neurobiol. 2007;36:45–59. doi: 10.1007/s12035-007-0005-2.CrossRefGoogle Scholar
  8. 8.
    Ottria R, Ravelli A, Gigli F, Ciuffreda P. Simultaneous ultra-high performance liquid chromatography-electrospray ionization-quadrupole-time of flight mass spectrometry quantification of endogenous anandamide and related N-acylethanolamides in bio-matrices. J Chromatogr B. 2014;958:83–9. doi: 10.1016/j.jchromb.2014.03.019.CrossRefGoogle Scholar
  9. 9.
    Ivanov I, Borchert P, Hinz B. A simple method for simultaneous determination of N-arachidonoylethanolamine, N-oleoylethanolamine, N-palmitoylethanolamine and 2-arachidonoylglycerol in human cells. Anal Bioanal Chem. 2015;407:1781–7. doi: 10.1007/s00216-014-8384-5.CrossRefGoogle Scholar
  10. 10.
    Liput DJ, Tsakalozou E, Hammell DC, Paudel KS, Nixon K, Stinchcomb AL. Quantification of anandamide, oleoylethanolamide and palmitoylethanolamide in rodent brain tissue using high performance liquid chromatography–electrospray mass spectroscopy. J Pharm Anal. 2014;4:234–41. doi: 10.1016/j.jpha.2013.11.004.CrossRefGoogle Scholar
  11. 11.
    Balvers MGJ, Wortelboer HM, Witkamp RF, Verhoeckx KCM. Liquid chromatography–tandem mass spectrometry analysis of free and esterified fatty acid N -acyl ethanolamines in plasma and blood cells. Anal Biochem. 2013;434:275–83. doi: 10.1016/j.ab.2012.11.008.CrossRefGoogle Scholar
  12. 12.
    Battista N, Sergi M, Montesano C, Napoletano S, Compagnone D, Maccarrone M. Analytical approaches for the determination of phytocannabinoids and endocannabinoids in human matrices. Drug Test Anal. 2014;6:7–16. doi: 10.1002/dta.1574.CrossRefGoogle Scholar
  13. 13.
    Rakers C, Zoerner AA, Engeli S, Batkai S, Jordan J, Tsikas D. Stable isotope liquid chromatography–tandem mass spectrometry assay for fatty acid amide hydrolase activity. Anal Biochem. 2012;421:699–705. doi: 10.1016/j.ab.2011.11.003.CrossRefGoogle Scholar
  14. 14.
    Jung K, Astarita G, Yasar S, Vasilevko V, Cribbs DH, Head E, Cotman CW, Piomelli D. An amyloid β42-dependent deficit in anandamide mobilization is associated with cognitive dysfunction in Alzheimer’s disease. Neurobiol Aging. 2012;33:1522–32. doi: 10.1016/j.neurobiolaging.2011.03.012.CrossRefGoogle Scholar
  15. 15.
    Lehtonen M, Storvik M, Malinen H, Hyytiä P, Lakso M, Auriola S, Wong G, Callaway JC. Determination of endocannabinoids in nematodes and human brain tissue by liquid chromatography electrospray ionization tandem mass spectrometry. J Chromatogr B. 2011;879:677–94. doi: 10.1016/j.jchromb.2011.02.004.CrossRefGoogle Scholar
  16. 16.
    Marczylo TH, Lam PMW, Amoako AA, Konje JC. Anandamide levels in human female reproductive tissues: solid-phase extraction and measurement by ultraperformance liquid chromatography tandem mass spectrometry. Anal Biochem. 2010;400:155–62. doi: 10.1016/j.ab.2009.12.025.CrossRefGoogle Scholar
  17. 17.
    Lam PMW, Marczylo TH, Konje JC (2010) Simultaneous measurement of three N-acylethanolamides in human bio-matrices using ultra performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2089–2097. doi: 10.1007/s00216-010-4103-z
  18. 18.
    Queiroz MEC, Melo LP. Selective capillary coating materials for in-tube solid-phase microextraction coupled to liquid chromatography to determine drugs and biomarkers in biological samples: a review. Anal Chim Acta. 2014;826:1–11. doi: 10.1016/j.aca.2014.03.024.CrossRefGoogle Scholar
  19. 19.
    Kataoka H, Saito K. Recent advances in column switching sample preparation in bioanalysis. Bioanalysis. 2012;4:809–32. doi: 10.4155/bio.12.28.CrossRefGoogle Scholar
  20. 20.
    Domingues DS, Souza ID, Eugênia M, Queiroz C. Analysis of drugs in plasma samples from schizophrenic patients by column-switching liquid chromatography-tandem mass spectrometry with organic–inorganic hybrid cyanopropyl monolithic column. J Chromatogr B. 2015;993-994:26–35. doi: 10.1016/j.jchromb.2015.04.040.CrossRefGoogle Scholar
  21. 21.
    Souza ID, Melo LP, Jardim ICSF, Monteiro JCS, Nakano AMS, Queiroz MEC. Selective molecularly imprinted polymer combined with restricted access material for in-tube SPME/UHPLC-MS/MS of parabens in breast milk samples. Anal Chim Acta. 2016;932:49–59. doi: 10.1016/j.aca.2016.05.027.CrossRefGoogle Scholar
  22. 22.
    Chaves AR, Queiroz MEC. Immunoaffinity in-tube solid phase microextraction coupled with liquid chromatography with fluorescence detection for determination of interferon α in plasma samples. J Chromatogr B. 2013;928:37–43. doi: 10.1016/j.jchromb.2013.03.016.CrossRefGoogle Scholar
  23. 23.
    Silva BJG, Lanças FM, Queiroz MEC. In-tube solid-phase microextraction coupled to liquid chromatography (in-tube SPME/LC) analysis of nontricyclic antidepressants in human plasma. J Chromatogr B. 2008;862:181–8. doi: 10.1016/j.jchromb.2007.12.006.CrossRefGoogle Scholar
  24. 24.
    Chaves AR, Silva BJG, Lanças FM, Queiroz MEC. Biocompatible in-tube solid phase microextraction coupled with liquid chromatography-fluorescence detection for determination of interferon α in plasma samples. J Chromatogr A. 2011;1218:3376–81. doi: 10.1016/j.chroma.2010.11.039.CrossRefGoogle Scholar
  25. 25.
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology. 1984;34:939. doi: 10.1212/WNL.34.7.939.CrossRefGoogle Scholar
  26. 26.
    Fekete S, Ganzler K, Fekete J. Efficiency of the new sub-2μm core–shell (Kinetex™) column in practice, applied for small and large molecule separation. J Pharm Biomed Anal. 2011;54:482–90. doi: 10.1016/j.jpba.2010.09.021.CrossRefGoogle Scholar
  27. 27.
    Campíns-Falcó P, Herráez-Hernández R, Sevillano-Cabeza A. Column-switching techniques for high-performance liquid chromatography of drugs in biological samples. J Chromatogr B Biomed Sci Appl. 1993;619:177–90. doi: 10.1016/0378-4347(93)80107-F.CrossRefGoogle Scholar
  28. 28.
    Correa F, Hernangómez-herrero M, Mestre L, Loría F, Docagne F, Guaza C. Brain, behavior, and immunity the endocannabinoid anandamide downregulates IL-23 and IL-12 subunits in a viral model of multiple sclerosis: evidence for a cross-talk between IL-12p70 / IL-23 axis and IL-10 in microglial cells. Brain Behav Immun. 2011;25:736–49. doi: 10.1016/j.bbi.2011.01.020.CrossRefGoogle Scholar
  29. 29.
    Souverain S, Rudaz S, Veuthey J-L. Restricted access materials and large particle supports for on-line sample preparation: an attractive approach for biological fluids analysis. J Chromatogr B. 2004;801:141–56. doi: 10.1016/j.jchromb.2003.11.043.CrossRefGoogle Scholar
  30. 30.
    Bonfiglio R, King RC, Olah TV, Merkle K. The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds. Rapid Commun Mass Spectrom. 1999;13:1175–85. doi: 10.1002/(SICI)1097-0231(19990630)13:12<1175::AID-RCM639>3.0.CO;2-0.CrossRefGoogle Scholar
  31. 31.
    Kebarle P. A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry. J Mass Spectrom. 2000;35:804–17. doi: 10.1002/1096-9888(200007)35:7<804::AID-JMS22>3.0.CO;2-Q.CrossRefGoogle Scholar
  32. 32.
    Sergi M, Battista N, Montesano C, Curini R, Maccarrone M, Compagnone D. Determination of the two major endocannabinoids in human plasma by μ-SPE followed by HPLC-MS/MS. Anal Bioanal Chem. 2013b;405:785–93. doi: 10.1007/s00216-012-6273-3.CrossRefGoogle Scholar
  33. 33.
    Schreiber D, Harlfinger S, Nolden BM, Gerth CW, Jaehde U, Schömig E, Klosterkötter J, Giuffrida A, Astarita G, Piomelli D, Markus Leweke F. Determination of anandamide and other fatty acyl ethanolamides in human serum by electrospray tandem mass spectrometry. Anal Biochem. 2007;361:162–8. doi: 10.1016/j.ab.2006.11.027.CrossRefGoogle Scholar
  34. 34.
    De Marchi N, De Petrocellis L, Orlando P, Daniele F, Fezza F, Di Marzo V. Endocannabinoid signalling in the blood of patients with schizophrenia. Lipids Health Dis. 2003;2:5. doi: 10.1186/1476-511X-2-5.CrossRefGoogle Scholar
  35. 35.
    Gachet MS, Rhyn P, Bosch OG, Quednow BB, Gertsch J. A quantitative LC-MS/MS method for the measurement of arachidonic acid, prostanoids, endocannabinoids, N-acylethanolamines and steroids in human plasma. J Chromatogr B. 2015;976-977:6–18. doi: 10.1016/j.jchromb.2014.11.001.CrossRefGoogle Scholar
  36. 36.
    Balvers MGJ, Verhoeckx KCM, Witkamp RF. Development and validation of a quantitative method for the determination of 12 endocannabinoids and related compounds in human plasma using liquid chromatography–tandem mass spectrometry. J Chromatogr B. 2009;877:1583–90. doi: 10.1016/j.jchromb.2009.04.010.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Camila Marchioni
    • 1
  • Israel Donizeti de Souza
    • 2
  • Caroline Fernandes Grecco
    • 2
  • José Alexandre Crippa
    • 3
  • Vitor Tumas
    • 3
  • Maria Eugênia Costa Queiroz
    • 1
    • 2
  1. 1.Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São Paulo (USP)São PauloBrazil
  2. 2.Departamento de QuímicaUniversidade de São Paulo (USP)São PauloBrazil
  3. 3.Department of Neuroscience and Behavior, Ribeirão Preto Medical SchoolUniversity of São PauloSão PauloBrazil

Personalised recommendations