Analytical and Bioanalytical Chemistry

, Volume 409, Issue 14, pp 3561–3571 | Cite as

Extraction and preconcentration of organophosphorus pesticides in water by using a polymethacrylate-based sorbent modified with magnetic nanoparticles

  • Susana Meseguer-Lloret
  • Sagrario Torres-Cartas
  • Mónica Catalá-Icardo
  • Ernesto F. Simó-Alfonso
  • José M. Herrero-Martínez
Research Paper


A polymethacrylate-based sorbent modified with magnetic nanoparticles (MNPs) has been synthesized and used as sorbent for solid-phase extraction (SPE) and magnetic solid-phase extraction (MSPE) of three organophosphorus pesticides (phosmet, pirimiphos-methyl, and chlorpyrifos) in water samples followed by high-performance liquid chromatography–diode array detection. The sorbent was prepared from a glycidyl methacrylate-based polymer, modified with a silanizing agent, followed by immobilization of MNPs on the surface of the material. The sorbent was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Comparative studies of this support were done both in conventional SPE cartridge and MSPE approach. Several extraction parameters (loading pH, elution solvent, eluting volume, and loading flow rate) were investigated in detail. Under optimal conditions, the proposed sorbent gave an excellent enrichment efficiency of analytes and detection limits between 0.01 and 0.25 μg L−1. The recoveries of organophosphorus pesticides in spiked water samples were in the range of 71–98%, and the developed sorbent showed a high reusability (up to 50 uses without losses in recovery). The proposed method was satisfactorily applied to the analysis of these pesticides in water samples from different sources.


Organophosphorus pesticides Magnetic polymer-based material Solid-phase extraction Water analysis 



This work was supported by projects CTQ2014-52765-R (MINECO of Spain and FEDER) and PROMETEO/2016/145 (Consellería de Educación, Investigación, Cultura y Deporte of Generalitat Valenciana, Spain).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2017_294_MOESM1_ESM.pdf (267 kb)
ESM 1 (PDF 266 kb)


  1. 1.
    Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumptionGoogle Scholar
  2. 2.
    Botitsi HV, Garbis SD, Economou A, Tsipi DF. Current mass spectrometry strategies for the analysis of pesticides and their metabolites in food and water matrices. Mass Spectrom Rev. 2011;30:907–39.Google Scholar
  3. 3.
    Kuster M, López de Alda M, Barceló D. Liquid chromatography tandem mass spectrometry analysis and regulatory issues for polar pesticides in natural and treated waters. J Chromatogr A. 2009;1216:520–9.CrossRefGoogle Scholar
  4. 4.
    Catalá-Icardo M, Meseguer-Lloret S, Torres-Cartas S. Photoinduced chemiluminescence determination of carbamate pesticides. Photochem Photobiol Sci. 2016;15:626–34.CrossRefGoogle Scholar
  5. 5.
    Huertas-Pérez JF, García-Campaña AM. Determination of N-methylcarbamate pesticides in water and vegetable samples by HPLC with post-column chemiluminescence detection using the luminol reaction. Anal Chim Acta. 2008;630(2):194–204.CrossRefGoogle Scholar
  6. 6.
    Samadi S, Sereshti H, Assadi Y. Ultra-preconcentration and determination of thirteen organophosphorus pesticides in water sample using solid-phase extraction followed by dispersive liquid-liquid microextraction and gas chromatography with flame photometric detection. J Chromatogr A. 2012;1219:61–5.CrossRefGoogle Scholar
  7. 7.
    He L, Luo X, Xie H, Wang C, Jiang X, Lu K. Ionic liquid-based dispersive liquid–liquid microextraction followed high-performance liquid chromatography for the determination of organophosphorus pesticides in water sample. Anal Chim Acta. 2009;655:52–9.CrossRefGoogle Scholar
  8. 8.
    Wu C, Liu N, Wu Q, Wang C, Wang Z. Application of ultrasound-assisted surfactant-enhanced emulsification microextraction for the determination of some organophosphorus pesticides in water samples. Anal Chim Acta. 2010;679:56–62.CrossRefGoogle Scholar
  9. 9.
    Peng G, Lu Y, He Q, Mmereki D, Zhou G, Chen J, et al. Determination of 3,5,6-trichloro-2-pyridinol, phoxim and chlorpyrifos-methyl in water samples using a new pretreatment method coupled with high-performance liquid chromatography. J Sep Sci. 2016;38:4204–10.CrossRefGoogle Scholar
  10. 10.
    Báez ME, Rodríguez M, Lastra O, Contreras P. Solid phase extraction of organophosphorus, triazine, and triazole-derived pesticides from water samples. A critical study. J High Resolut Chrom. 1997;20:591–6.CrossRefGoogle Scholar
  11. 11.
    Rocha AA, Monteiro SH, Andrade GCRM, Vilca FZ, Tornisielo CL. Monitoring of pesticides residues in surface and subsurface waters, sediments and fish in center-pivot irrigation areas. J Braz Chem Soc. 2015;25(11):2269–78.Google Scholar
  12. 12.
    Hadjmohammadi MR, Peyrovi M, Biparva P. Comparison of C18 silica and multi-walled carbon nanotubes as the adsorbents for the solid-phase extraction of Chlorpyrifos and Phosalone in water samples using HPLC. J Sep Sci. 2010;33:1044–51.CrossRefGoogle Scholar
  13. 13.
    Pelit L, Dizdas TN. Preparation and application of a polythiophene solid-phase microextraction fiber for the determination of endocrine-disruptor pesticides in well waters. J Sep Sci. 2013;36:3234–41.Google Scholar
  14. 14.
    Ibrahim WAW, Nodeh HR, Aboul-Enein HY, Sanagi MM. Magnetic solid phase extraction based on modified ferum oxides for enrichment, preconcentration and isolation of pesticides and selected pollutants. Crit Rev Anal Chem. 2015;45:270–87.CrossRefGoogle Scholar
  15. 15.
    Li XS, Zhu GT, Luo YB, Yuan BF, Feng YQ. Synthesis and applications of functionalized magnetic materials in sample preparation. Trends Anal Chem. 2013;45:233–47.CrossRefGoogle Scholar
  16. 16.
    Maddah B, Shamsi J. Extraction and preconcentration of trace amounts of diazinon and fenitrothion from environmental water by magnetite octadecylsilane nanoparticles. J Chromatogr A. 2012;1256:40–5.CrossRefGoogle Scholar
  17. 17.
    Xie J, Liu T, Song G, Hu Y, Deng C. Simultaneous analysis of organophosphorus pesticides in water by magnetic solid phase extraction coupled with GC-MS. Chromatographia. 2013;76:535–40.CrossRefGoogle Scholar
  18. 18.
    Heidari H, Razmi H. Multiresponse optimization of magnetic solid phase extraction based on carbon coated Fe3O4 nanoparticles using desirability function approach for the determination of the organophosphorus pesticides in aquatic samples by HPLC-UV. Talanta. 2012;99:13–21.CrossRefGoogle Scholar
  19. 19.
    Yan S, Qi TT, Chen DW, Li Z, Li XJ, Pan SY. Magnetic solid-phase extraction based on magnetite/reduced graphene oxide nanoparticles for determination of trace isocarbophos residues in different matrices. J Chromatogr A. 2014;1347:30–8.CrossRefGoogle Scholar
  20. 20.
    Tavakoli M, Hajimahmoodi M, Shemirani F. Trace level monitoring of pesticides in water samples using fatty acid coated magnetic nanoparticles prior to GC-MS. Anal Methods. 2014;6:2988–97.CrossRefGoogle Scholar
  21. 21.
    Tang Q, Wang X, Yu F, Qiao X, Xu Z. Simultaneous determination of ten organophosphorus pesticide residues in fruits by gas chromatography coupled with magnetic separation. J Sep Sci. 2014;27:820–7.CrossRefGoogle Scholar
  22. 22.
    Shen H, Zhu Y, Wen X, Zhuang Y. Preparation of Fe3O4-C18 nano-magnetic composite materials and their cleanup properties for organophosphorous pesticides. Anal Bioanal Chem. 2007;387:2227–37.CrossRefGoogle Scholar
  23. 23.
    Bagheri H, Zandi O, Aghakhani A. Magnetic nanoparticle-based micro-solid phase extraction and GC–MS determination of oxadiargyl in aqueous samples. Chromatographia. 2011;74:483–8.CrossRefGoogle Scholar
  24. 24.
    Moravcova D, Rantamaki AH, Dusa F, Wiedmer SK. Monoliths in capillary electrochromatography and capillary liquid chromatography in conjunction with mass spectrometry. Electrophoresis. 2016;37(7–8):880–912.CrossRefGoogle Scholar
  25. 25.
    Nema T, Chan ECY, Ho PC. Applications of monolithic materials for sample preparation. J Pharm Biomed Anal. 2014;87:130–41.CrossRefGoogle Scholar
  26. 26.
    Vergara-Barberán M, Lerma-García MJ, Simó-Alfonso EF, Herrero-Martínez JM. Solid-phase extraction based on ground methacrylate monolith modified with gold nanoparticles for isolation of proteins. Anal Chim Acta. 2016;917:37–43.CrossRefGoogle Scholar
  27. 27.
    Vukoje ID, Dzunuzovic ES, Vodnik VV, Dimitrijevic S, Ahrenkiel SP, Nedeljkovic JM. Synthesis, characterization, and antimicrobial activity of poly(GMA-co-EGDMA) polymer decorated with silver nanoparticles. J Mater Sci. 2014;49:6838–44.CrossRefGoogle Scholar
  28. 28.
    Krenkova J, Foret F. Iron oxide nanoparticle coating of organic polymer-based monolithic columns for phosphopeptide enrichment. J Sep Sci. 2011;34(16–17):2106–12.Google Scholar
  29. 29.
    Daou TJ, Begin-Colin S, Grenèche JM, Thomas F, Derory A, Bernhardt P, et al. Phosphate adsorption properties of magnetite-based nanoparticles. Chem Mater. 2007;19:4494–505.CrossRefGoogle Scholar
  30. 30.
    Mezenner NY, Bensmaili A. Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. Chem Eng J. 2009;147:87–96.CrossRefGoogle Scholar
  31. 31.
    Yang C, Wang G, Lu Z, Sun J, Zhuang J, Yang W. Effect of ultrasonic treatment on dispersibility of Fe3O4 nanoparticles and synthesis of multi-core Fe3O4/SiO2 core/shell nanoparticles. J Mater Chem. 2005;15:4252–7.CrossRefGoogle Scholar
  32. 32.
    Carrasco-Correa EJ, Ramis-Ramos G, Herrero-Martínez JM. Methacrylate monolithic columns functionalized with epinephrine for capillary electrochromatography applications. J Chromatogr A. 2013;1298:61–7.CrossRefGoogle Scholar
  33. 33.
    Waldron RD. Infrared spectra of ferrites. Phys Rev. 1955;99:1727–35.CrossRefGoogle Scholar
  34. 34.
    Yamaura M, Camilo RL, Sampaio LC, Macedo MA, Nakamura M, Toma HE. Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. J Magn Magn Mat. 2004;279:210–7.CrossRefGoogle Scholar
  35. 35.
    Jiang L, Sun W, Kim J. Preparation and characterization of ω-functionalized polystyrene–magnetite nanocomposites. Mater Chem Phys. 2007;101:291–6.CrossRefGoogle Scholar
  36. 36.
    Dallas P, Georgakilas V, Niarchos D, Komninou P, Kehagias T, Petridis D. Synthesis, characterization and thermal properties of polymer/magnetite nanocomposites. Nanotechnology. 2006;17:2046–53.CrossRefGoogle Scholar
  37. 37.
    Zhao XL, Shi YL, Wang T, Cai YQ, Jiang GB. Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples. J Chromatogr A. 2008;1188:140–7.CrossRefGoogle Scholar
  38. 38.
    Sitko R, Gliwinska B, Zawisza B, Feist B. Ultrasound-assisted solid-phase extraction using multiwalled carbon nanotubes for determination of cadmium by flame atomic absorption spectrometry. J Anal At Spectrom. 2013;28:405–10.CrossRefGoogle Scholar
  39. 39.
    Suslick KS, Price GJ. Application of ultrasound to materials chemistry. Annu Rev Mater Sci. 1999;29:295–326.CrossRefGoogle Scholar
  40. 40.
    Boqué R, Heyden YV. The limit of detection. LCGC Eur. 2009;22(2):1–4.Google Scholar
  41. 41.
    Catalá-Icardo M, Lahuerta-Zamora L, Torres-Cartas S, Meseguer-Lloret S. Determination of organothiophosphorus pesticides in water by liquid chromatography and post-column chemiluminescence with cerium(IV). J Chromatogr A. 2014;1341:31–40.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Susana Meseguer-Lloret
    • 1
  • Sagrario Torres-Cartas
    • 1
  • Mónica Catalá-Icardo
    • 1
  • Ernesto F. Simó-Alfonso
    • 2
  • José M. Herrero-Martínez
    • 2
  1. 1.Instituto de Investigación para la Gestión Integrada de Zonas CosterasUniversitat Politècnica de ValènciaGrao de GandíaSpain
  2. 2.Department of Analytical ChemistryUniversity of ValenciaValenciaSpain

Personalised recommendations