Skip to main content

Advertisement

Log in

Analytical approaches for the characterization and quantification of nanoparticles in food and beverages

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Estimating consumer exposure to nanomaterials (NMs) in food products and predicting their toxicological properties are necessary steps in the assessment of the risks of this technology. To this end, analytical methods have to be available to detect, characterize and quantify NMs in food and materials related to food, e.g. food packaging and biological samples following metabolization of food. The challenge for the analytical sciences is that the characterization of NMs requires chemical as well as physical information. This article offers a comprehensive analysis of methods available for the detection and characterization of NMs in food and related products. Special attention was paid to the crucial role of sample preparation methods since these have been partially neglected in the scientific literature so far. The currently available instrumental methods are grouped as fractionation, counting and ensemble methods, and their advantages and limitations are discussed. We conclude that much progress has been made over the last 5 years but that many challenges still exist. Future perspectives and priority research needs are pointed out.

Two possible analytical strategies for the sizing and quantification of Nanoparticles: Asymmetric Flow Field-Flow Fractionation with multiple detectors (allows the determination of true size and mass-based particle size distribution); Single Particle Inductively Coupled Plasma Mass Spectrometry (allows the determination of a spherical equivalent diameter of the particle and a number-based particle size distribution)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. European Commission. Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee. Second regulatory review on nanomaterials; 2012.

  2. Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E. Nanotechnologies in the food industry – recent developments, risks and regulation. Trends Food Sci Technol. 2012;24:30–46.

    Article  CAS  Google Scholar 

  3. European Commission. Commission Recommendation of 18 October 2011 on the definition of nanomaterial. Off J Eur Union. 2011;L275/38-L275/40.

  4. Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellov M. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A. 2008;25:795–821.

    Article  CAS  Google Scholar 

  5. Stamm H, Gibson N, Anklam E. Detection of nanomaterials in food and consumer products: bridging the gap from legislation to enforcement. Food Addit Contam Part A. 2012;29:1175–82.

    Article  CAS  Google Scholar 

  6. Blasco C, Picó Y. Determining nanomaterials in food. Trends Anal Chem. 2011;30:84–99.

    Article  CAS  Google Scholar 

  7. Peters R, Brandhoff P, Weigel S, Marvin H, Bouwmeester H, Aschberger K, Rauscher H, Amenta V, Arena M, Botelho Moniz F, Gottardo S, Mech A. Inventory of nanotechnology applications in the agricultural, feed and food sector. EFSA supporting publication 2014:EN-621. www.efsa.europa.eu/publications. Accessed 1 Jan 2016.

  8. Deleers M, Pathak Y, Thassu D. Nanoparticulate drug delivery systems. New York: Informa Healthcare; 2007. ISBN 9780849390739.

  9. Des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116:1–27.

    Article  CAS  Google Scholar 

  10. Guo P, Martin CR, Zhao Y, Ge J, Zare RN. General method for producing organic nanoparticles using nanoporous membranes. NANO Lett. 2010;10:2202–6.

    Article  CAS  Google Scholar 

  11. Livney YD. Milk proteins as vehicles for bio-actives. Curr Opinion Colloid Interface Sci. 2010;15:73–81.

    Article  CAS  Google Scholar 

  12. Namazi H, Fathi F, Heydari A. Nanoparticles based on modified polysaccharides. In: The delivery of nanoparticles. InTech; 2012. ISBN 978-953-51-0615-9. Available from: http://www.intechopen.com/books/the-delivery-of-nanoparticles/nanoparticles-basedon-modified-polysaccharides. Accessed 1 Jan 2016.

  13. Calzolai L, Gilliland D, Rossi F. Measuring nanoparticles size distribution in food and consumer products: a review. Food Addit Contam Part A. 2012;29:1183–93.

    Article  CAS  Google Scholar 

  14. Peters RJB, van Bemmel G, Herrera-Rivera Z, Helsper HPFG, Marvin HJP, Weigel S, et al. Characterization of titanium dioxide NPs in food products: analytical methods to define NPs. J Agric Food Chem. 2014;62:6285–93.

    Article  CAS  Google Scholar 

  15. Weir A, Westerhoff P, Fabricius L, von Goetz N. Titanium dioxide NPs in food and personal care products. Environ Sci Technol. 2012;46:2242–50.

    Article  CAS  Google Scholar 

  16. Duncan TV. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci. 2011;363:1–24.

    Article  CAS  Google Scholar 

  17. Hsueh Y-H, Lin K-S, Ke W-J, Hsieh C-T, Chiang C-L, Tzou D-Y, et al. The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag + ions. PLoS One. 2015;10:e0144306.

    Article  CAS  Google Scholar 

  18. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.

    Article  CAS  Google Scholar 

  19. Siqueira MC, Coelho GF, de Moura MR, Bresolin JD, Hubinger SZ, Marconcini JM, et al. Evaluation of antimicrobial activity of silver nanoparticles for carboxymethylcellulose film applications in food packaging. J Nanosci Nanotechnol. 2014;14:5512–7.

    Article  CAS  Google Scholar 

  20. Echegoyen Y, Nerín C. Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol. 2013;62:16–22.

    Article  CAS  Google Scholar 

  21. Bott J, Stormer A, Franz R. Migration of nanoparticles from plastic packaging materials containing carbon black into foodstuffs. Food Addit Contam Part A. 2014;31:1769–82.

    Article  CAS  Google Scholar 

  22. Mackevica A, Olsson ME, Hansen SF. Silver nanoparticle release from commercially available plastic food containers into food simulants. J Nanopart Res. 2016;18:article no. 5.

  23. Pineda L, Chwalibog A, Sawosz E, Lauridsen C, Engberg R, Elnif J, et al. Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Arch Anim Nutr. 2012;66:416–29.

    Article  CAS  Google Scholar 

  24. Peters RJB, Herrera Rivera Z, van Bemmel G, Marvin HJP, Weigel S, Bouwmeester H. Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. Anal Bioanal Chem. 2014;406:3875–85.

    CAS  Google Scholar 

  25. Xu J, Yang F, An X, Hu Q. Anticarcinogenic activity of selenium-enriched green tea extracts in vivo. J Agric Food Chem. 2007;55:5349–53.

    Article  CAS  Google Scholar 

  26. Hannig M, Hannig C. Nanomaterials in preventive dentistry. Nat Nanotechnol. 2010;5:565–9.

    Article  CAS  Google Scholar 

  27. Sekhon BS. Food nanotechnology – an overview. Nanotechnol Sci Appl. 2010;3:1–15.

    CAS  Google Scholar 

  28. Purest Colloids. http//www.purestcolloids.com/(2013). Accessed 1 Jan 2016.

  29. Van der Zande M, Vandebriel RJ, Groot MJ, Kramer E, Herrera Rivera ZE, Rasmussen K, et al. Sub-chronic toxicity study in rats orally exposed to nanostructured silica. Part Fibre Toxicol. 2014;11:8.

    Article  CAS  Google Scholar 

  30. Peters R, Kramer E, Oomen AG, Rivera ZE, Oegema G, Tromp PC, et al. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive. ACS Nano. 2012;6:2441–51.

    Article  CAS  Google Scholar 

  31. House of Lord Science and Technology Committee. 1st Report of Session 2009–10 Nanotechnologies and Food Volume I; 2010.

  32. Smolkova B, El Yamani N, Collins AR, Gutleb AC, Dusinska M. Nanoparticles in food. Epigenetic changes induced by nanomaterials and possible impact on health. Food Chem Toxicol. 2015;77:64–73.

    Article  CAS  Google Scholar 

  33. FAO/WHO Expert Meeting on the Application of Nanotechnologies in the Food and Agriculture Sectors: Potential Food Safety Implications, Meeting Report 1-102, 2009 (http://www.fao.org/ag/agn/agns/nanotechnologies_en.asp). Accessed 25 Aug 2015.

  34. Chaudhry Q, Aitken R, Scotter M, Blackburn J, Ross B, Boxall A, et al. Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A. 2008;25:241–58.

    Article  CAS  Google Scholar 

  35. Friends of the Earth Australia. “Way too little”. http://emergingtech.foe.org.au/wp-content/uploads/2014/05/FOE_nanotech_food_report_low_res1.pdf (2014). Accessed 25 Aug 2015.

  36. Lòpez-Serrano AL, Olivas RM, Landaluze JS, Nanoparticles CC. a global vision. characterization, separation and quantification methods. Potential environmental and health implications. Anal Methods. 2014;6:38–56.

    Article  Google Scholar 

  37. European Union. Scientific Committee on Emerging and Newly-Identified Health Risks (SCENIHR): Opinion on the appropriateness of the risk assessment methodology in accordance with the technical guidance documents for new and existing substances for assessing the risks of nanomaterials; 2007.

  38. Von der Kammer F, Lee Ferguson P, Holden PA, Masion A, Rogers KR, Klaine SJ, et al. Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case study. Environ Toxicol Chem. 2012;31:32–49.

    Article  CAS  Google Scholar 

  39. Loeschner K, Navratilova J, Købler C, Mølhave S, Wagner S, von der Kammer F, et al. Detection and characterization of silver NPs in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS. Anal Bioanal Chem. 2013;405:8185–95.

    Article  CAS  Google Scholar 

  40. Linsinger TP, Chaudhry Q, Dehalu V, Delahaut P, Dudkiewicz A, Grombe R, et al. Validation of methods for the detection and quantification of engineered nanoparticles in food. Food Chem. 2013;138:1959–66.

    Article  CAS  Google Scholar 

  41. Peters R, Helsper H, Weigel S. NanoLyse EU project. 2011. Nanoparticles in food: analytical methods for detection and characterisation. Deliverable D4.1a. Sampling of nanoparticles: Relation between sample size and sampling error. http://www.nanolyse.eu/default.aspx. Accessed 1 Jan 2016.

  42. Simonet BM, Valcárcel M. Monitoring NPs in the environment. Anal Bioanal Chem. 2009;393:17–21.

    Article  CAS  Google Scholar 

  43. Weinberg H, Galyean A, Leopold M. Evaluating engineered NPs in natural waters. Trends Anal Chem. 2011;30:72–83.

    Article  CAS  Google Scholar 

  44. Hassellöv M, Readman JW, Ranville JF, Tiede K. NPs analysis and characterization methodologies in environmental risk assessment of engineered NPs. Ecotoxicology. 2008;17:344–61.

    Article  CAS  Google Scholar 

  45. Wagner S, Legros S, Loeschner K, Liu J, Navratilova J, Grombe R, et al. First steps towards a generic sample preparation scheme for inorganic engineered nanoparticles in a complex matrix for detection, characterization, and quantification by asymmetric flow-field flow fractionation coupled to multi-angle light scattering and ICP-MS. J Anal At Spectrom. 2015;30:1286–96.

    Article  CAS  Google Scholar 

  46. López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 NPs and assessment of their differential toxicity in four edible plant species. J Agric Food Chem. 2010;58:3689–93.

    Article  CAS  Google Scholar 

  47. Johnston BD, Scown TM, Moger J, Cumberland SA, Baalousha M, Linge K, et al. Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish. Environ Sci Technol. 2010;44:1144–51.

    Article  CAS  Google Scholar 

  48. Shaw BJ, Ramsden CS, Turner A, Handy RD. A simplified method for determining titanium from TiO2 NPs in fish tissue with a concomitant multi-element analysis. Chemosphere. 2013;92:1136–44.

    Article  CAS  Google Scholar 

  49. Liu J, Pennell KG, Hurt RH. Kinetics and mechanisms of nano-silver oxysulfidation. Environ Sci Technol. 2011;45:7345–53.

    Article  CAS  Google Scholar 

  50. Gray EP, Coleman JG, Bednar AJ, Kennedy AJ, Ranville JF, Higgins CP. Extraction and analysis of silver and gold NPs from biological tissues using single particle inductively coupled plasma mass spectrometry. Environ Sci Technol. 2013;47:14315–23.

    Article  CAS  Google Scholar 

  51. Schmidt B, Loeschner K, Hadrup N, Mortensen A, Sloth JJ, Bender Koch C, et al. Quantitative characterization of gold NPs by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry. Anal Chem. 2011;83:2461–8.

    Article  CAS  Google Scholar 

  52. Arslan Z, Ates M, McDuffy W, Agachan MS, Farah IO, Yu WW, et al. Probing metabolic stability of CdSe NPs: alkaline extraction of free cadmium from liver and kidney samples of rats exposed to CdSe NPs. J Hazard Mater. 2011;192:192–9.

    CAS  Google Scholar 

  53. Beltrami D, Calestani D, Maffini M, Suman M, Melegari B, Zappettini A, et al. Development of a combined SEM and ICP-MS approach for the qualitative and quantitative analyses of metal nano and microparticles in food products. Anal Bioanal Chem. 2011;401:1401–9.

    Article  CAS  Google Scholar 

  54. Sager TM, Porter DW, Robinson VA, Lindsley WG, Schwegler-Berry DE, Castranova V. Improved method to disperse NPs for in vitro and in vivo investigation of toxicity. Nanotoxicology. 2007;1:118–29.

    Article  CAS  Google Scholar 

  55. Lopez-Lorente AI, Simonet BM, Valcárcel M. Rapid analysis of gold nanoparticles in liver and river water samples. Analyst. 2012;137:3528–34.

    Article  CAS  Google Scholar 

  56. Lopez-Lorente AI, Valcárel M. The third way in analytical nanoscience and nanotechnology: involvement of nanotools and nanoanalytes in the same analytical process. Trends Anal Chem. 2016;75:1–9.

    Article  CAS  Google Scholar 

  57. Ruiz-Palomero C, Soriano ML, Valcárcel M. Sulfonated nanocellulose for the efficient dispersive micro solid-phase extraction and determination of silver nanoparticles in food products. J Chromatography A. 2016;1428:352–8.

    Article  CAS  Google Scholar 

  58. Kowalczyk B, Lagzi I, Grzybowski BA. Nanoseparations: strategies for size and/or shape-selective purification of NPs. Curr Opin Coll Interface Sci. 2011;16:135–48.

    Article  CAS  Google Scholar 

  59. Ferreira da Silva B, Pérez S, Gardinalli P, Singhal RK, Mozeto AA, Barceló D. Analytical chemistry of metallic NPs in natural environments. Trends Anal Chem. 2011;30:528–40.

    Article  CAS  Google Scholar 

  60. Morrison MA, Benoit G. Filtration artifacts caused by overloading membrane filters. Environ Sci Technol. 2001;35:3774–9.

    Article  CAS  Google Scholar 

  61. Chen JC, Li Q, Elimelech M. In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration. Adv Colloid Interface Sci. 2004;107:83–108.

    Article  CAS  Google Scholar 

  62. Bolea E, Laborda F, Castillo JR. Metal associations to microparticles, nanocolloids and macromolecules in compost leachates: size characterization by asymmetrical flow field-flow fractionation coupled to ICP-MS. Anal Chim Acta. 2010;661:206–14.

    Article  CAS  Google Scholar 

  63. Heroult J, Nischwitz V, Bartczak D, Goenaga-Infante H. The potential of asymmetric flow field-flow fractionation hyphenated to multiple detectors for the quantification and size estimation of silica NPs in a food matrix. Anal Bioanal Chem. 2014;406:3919–27.

    Article  CAS  Google Scholar 

  64. Von der Kammer F, Legros S, Larsen EH, Loeschner K, Hofmann T. Separation and characterization of NPs in complex food and environmental samples by field-flow fractionation. Trends Anal Chem. 2011;30:425–36.

    Article  CAS  Google Scholar 

  65. Dalwadi G, Benson HA, Chen Y. Comparison of diafiltration and tangential flow filtration for purification of nanoparticle suspensions. Pharm Res. 2005;22:2152–62.

    Article  CAS  Google Scholar 

  66. Anders CB, Baker JD, Stahler AC, Williams AJ, Sisco JN, Trefry JC, et al. Tangential flow ultrafiltration: a “green” method for the size selection and concentration of colloidal silver nanoparticles. J Vis Exp. 2012;68:e4167.

    Google Scholar 

  67. Chao JB, Liu JF, Yu SJ, Feng YD, Tan ZQ, Liu R, et al. Speciation analysis of silver nanoparticles and silver ions in antibacterial products and environmental waters via cloud point extraction-based separation. Anal Chem. 2011;83:6875–82.

    Article  CAS  Google Scholar 

  68. Luykx DMAM, Peters RJB, van Ruth SM, Bouwmeester H. A review of analytical methods for the identification and characterization of nano delivery systems in food. J Agric Food Chem. 2008;56:8231–47.

    Article  CAS  Google Scholar 

  69. Peters R, ten Dam G, Bouwmeester H, Helsper H, Allmaier G, von der Kammer F, et al. Identification and characterization of organic nanoparticles in food. TRAC-Trend Anal Chem. 2011;30:100–12.

    Article  CAS  Google Scholar 

  70. Helsper JPFG, Peters RJB, Brouwer L, Weigel S. Characterisation and quantification of liposome-type nanoparticles in a beverage matrix using hydrodynamic chromatography and MALDI–TOF mass spectrometry. Anal Bioanal Chem. 2013;405:1181–9.

    Article  CAS  Google Scholar 

  71. Lespes G, Gigault J. Hyphenated analytical techniques for multidimensional characterization of submicron particles: a review. Anal Chim Acta. 2011;692:26–41.

    Article  CAS  Google Scholar 

  72. Sadik OA, Du N, Kariuki V, Okello V, Bushlyar V. Current and emerging technologies for the characterization of nanomaterials. Sustainable Chem Eng. 2014;2:1707–16.

    Article  CAS  Google Scholar 

  73. Cascio C, Gilliland D, Rossi F, Calzolai L, Contado C. Experimental evaluation of key methods to detect, size and quantify nanoparticulate silver. Anal Chem. 2014;86:12143–51.

    Article  CAS  Google Scholar 

  74. Cascio C, Geiss O, Franchini F, Ojea-Jimenez I, Rossi F, Gilliland D, et al. Detection, quantification and derivation of number size distribution of silver nanoparticles in antimicrobial consumer products. J Anal At Spectrom. 2015;30:1255–65.

    Article  CAS  Google Scholar 

  75. EFSA Scientific Committee. Scientific opinion – Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J. 2011;9(5):2140.

    Article  CAS  Google Scholar 

  76. Peters R, Herrera-Rivera Z, Undas A, van der Lee M, Marvin H, Bouwmeestera H, et al. Single particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices. J Anal At Spectrom. 2015;30:1274–85.

    Article  CAS  Google Scholar 

  77. Loeschner K, Navratilova J, Grombe R, Linsinger TPJ, Købler C, Mølhave K, et al. In-house validation of a method for determination of silver nanoparticles in chicken meat based on asymmetric flow field-flow fractionation and inductively coupled plasma mass spectrometric detection. Food Chem. 2015;181:78–84.

    Article  CAS  Google Scholar 

  78. Ramos K, Ramos L, Camara C, Gomez-Gomez MM. Characterization and quantification of silver nanoparticles in nutraceuticals and beverages by asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry. J Chromatogr A. 2014;1371:227–36.

    Article  CAS  Google Scholar 

  79. Aureli F, D'Amato M, Raggi A, Cubadda F. Quantitative characterization of silica nanoparticles by asymmetric flow field flow fractionation coupled with online multiangle light scattering and ICP-MS/MS detection. J Anal At Spectrom. 2015;30:1266–73.

    Article  CAS  Google Scholar 

  80. Contado C, Ravani L, Passarella M. Size characterization by sedimentation field flow fractionation of silica particles used as food additives. Anal Chim Acta. 2013;788:183–92.

    Article  CAS  Google Scholar 

  81. Barahona F, Geiss O, Urbán P, Ojea-Jimenez I, Gilliland D, Barrero-Moreno J. Simultaneous determination of size and quantification of silica nanoparticles by asymmetric flow field-flow fractionation coupled to ICPMS using silica nanoparticles standards. Anal Chem. 2015;87:3039–47.

    Article  CAS  Google Scholar 

  82. Lopez-Heras I, Madrid Y, Cámara C. Prospects and difficulties in TiO2 nanoparticles in cosmetic and food products using asymmetrical flow field-flow fractionation hyphenated to inductively coupled plasma mass spectrometry. Talanta. 2014;124:71–8.

    Article  CAS  Google Scholar 

  83. Pergantis SA, Jones-Lepp TL, Heithmar EM. Hydrodynamic chromatography online with single particle-inductively coupled plasma mass spectrometry for ultratrace detection of metal-containing nanoparticles. Anal Chem. 2012;84:6454–62.

    Article  CAS  Google Scholar 

  84. Brewer AK, Striegel AM. Characterizing the size, shape and compactness of a polydisperse prolate ellipsoidal particle via quadrupole-detector hydrodynamic chromatography. Analyst. 2011;136:515–9.

    Article  CAS  Google Scholar 

  85. Dekkers S, Krystek P, Peters RJ, Lankveld DP, Bokkers BG, van Hoeven-Arentzen PH, et al. Presence and risks of nanosilica in food products. Nanotoxicology. 2011;5:393–405.

    Article  CAS  Google Scholar 

  86. Klavons JA, Dintzis FR, Millard MM. Hydrodynamic chromatography of waxy maize starch. Cereal Chem. 1997;74:832–6.

    Article  CAS  Google Scholar 

  87. Verleysen E, Van Doren E, Waegeneers N, De Temmerman PJ, Abi Daoud Francisco M, Mast J. TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry. J Agric Food Chem. 2015;63:3570–8.

    Article  CAS  Google Scholar 

  88. Bao D, Oh ZG, Chen Z. Characterization of silver nanoparticles internalized by arabidopsis plants using single particle ICP-MS analysis. Front Plant Sci. 2016;7:32.

    Google Scholar 

  89. Zhang Z, Kong F, Vardhanabhuti B, Mustapha A, Lin M. Detection of engineered silver nanoparticle contamination in pears. J Agr Food Chem. 2012;60:10762–7.

    Article  CAS  Google Scholar 

  90. Metak AM, Nabhani F, Connolly SN. Migration of engineered nanoparticles from packaging into food products. Food Sci Technol. 2015;64:781–7.

    CAS  Google Scholar 

  91. Lari L, Dudkiewicz A. In: Nellist PD, editor. Electron microscopy and analysis group conference 2013; sample preparation and EFTEM of meta samples for nanoparticle analysis in food. IOP, Bristol; 2014.

  92. Gatti AM, Tossini D, Gambarelli A, Montanari S, Capitani F. Investigation of the presence of inorganic micron- and nanosized contaminants in bread and biscuits by environmental scanning electron microscopy. Crit Rev Food. 2009;49:275–82.

    Article  Google Scholar 

  93. Kaegi R, Wagner T, Hetzer B, Sinnet B, Tzetkov G, Böller M. Size, number and chemical composition of nanosized particle in drinking water determined by analytical microscopy and LIBD. Water Res. 2008;42:2778–86.

    Article  CAS  Google Scholar 

  94. Peters RJB, Herrera-Rivera Z, Bouwmeester H, Weigel S, Marvin HJP. Advanced analytical techniques for the measurement of nanomaterials in complex samples: a comparison. Qual Assur Saf Crops Foods. 2014;6:281–90.

    Article  CAS  Google Scholar 

  95. Periasamy VS, Athinarayanan J, Al-Hadi AM, Al Juhaimi F, Mahmoud MH, Alshatwi AA. Identification of titanium dioxide nanoparticles in food products: induce intracellular oxidative stress mediated by TNF CYPIA genes in human lung fibroblast cells. Environ Toxicol Pharmacol. 2015;39:176–86.

    Article  CAS  Google Scholar 

  96. Song X, Li R, Li H, Hu Z, Mustapha A, Lin M. Characterization and quantification of zinc oxide and titanium oxide nanoparticles in foods. Food Bioprocess Technol. 2014;7:456–62.

    Article  CAS  Google Scholar 

  97. Rebe-Raz S, Leontaridou M, Bremer MGEG, Peters R, Weigel S. Development of surface plasmon resonance-based sensor for detection of silver nanoparticles in food and the environment. Anal Bioanal Chem. 2012;403:2843–50.

    Article  CAS  Google Scholar 

  98. von der Kammer F, Baborowski M, Friese K. Field-flow fractionation coupled to multi-angle laser light scattering detectors: applicability and analytical benefits for the analysis of environmental colloids. Anal Chim Acta. 2005;552:166–74.

    Article  CAS  Google Scholar 

  99. Montoro Bustos AR, Ruiz Encinar J, Sanz-Medel A. Mass spectrometry for the characterization of nanoparticles. Anal Bioanal Chem. 2013;405:5637–43.

    Article  CAS  Google Scholar 

  100. Dubascoux S, Le Hécho I, Potin Gautier M, Lespes G. On-line and off-line quantification of trace elements associated to colloids by As-FI-FFF and ICP-MS. Talanta. 2008;77:60–5.

    Article  CAS  Google Scholar 

  101. Giddings JC. A new separation concept based on a coupling of concentration and flow nonuniformities. Sep Sci. 1966;1:123–5.

    CAS  Google Scholar 

  102. von der Kammer F. Summa cum laude doctorate degree Thesis at the Hamburg Universty of Technology (TUHH) in natural sciences (Dr. rer. nat.). Thesis title: “Characterization of environmental colloids applying field-flow fractionation - multi detection analysis with emphasis on light scattering techniques”. 2005.

  103. Schimpf M, Caldwell K, Giddings JC. Field-flow fractionation handbook. New York: Wiley-Interscience; 2000.

    Google Scholar 

  104. Bednar AJ, Poda AR, Mitrano DM, Kennedy AJ, Gray EP, Ranville JF, et al. Comparison of on-line detectors for field flow fractionation analysis of nanomaterials. Talanta. 2013;104:140–8.

    Article  CAS  Google Scholar 

  105. Calzolai L, Gilliland D, Pascual Garcìa C, Rossi F. Separation and characterization of gold nanoparticle mixtures by flow-field-flow fractionation. J Chromatogr A. 2011;1218:4234–9.

    Article  CAS  Google Scholar 

  106. Berne BJ, Pecora R. Dynamic light-scattering: with application to chemistry, biology and physics. New York: Dover; 2000.

    Google Scholar 

  107. Velimirovic M, Wagner S, von der Kammer F, Hofmann T. Applying a generic sample preparation approach to isolate nanomaterials from food and cosmetics. Conference Proceeding, SETAC Europe 25th Annual Meeting, Barcelona, Spain; 2015.

  108. Tiede K, Tear SP, David H, Boxall ABA. Imaging of engineered nanoparticles and their aggregates under fully liquid conditions in environmental matrices. Water Res. 2009;43:3335–43.

    Article  CAS  Google Scholar 

  109. Tiede K, Boxall ABA, Wang X, Gore D, Tiede D, Baxter M, et al. Application of hydrodynamic chromatography-ICP-MS to investigate the fate of silver nanoparticles in activated sludge. J Anal At Spectrom. 2010;25(7):1149–54.

    Article  CAS  Google Scholar 

  110. Philippe A, Gangloff M, Rakcheeva D, Schaumann GE. Evaluation of hydrodynamic chromatography coupled with inductively coupled plasma mass spectrometry detector for analysis of colloids in environmental media - effects of colloid composition, coating and shape. Anal Methods. 2014;6:8722–8.

    Article  CAS  Google Scholar 

  111. Philippe A, Schaumann GE. Evaluation of hydrodynamic chromatography coupled with UV-visible, fluorescence and inductively coupled plasma mass spectrometry detectors for sizing and quantifying colloids in environmental media. PLoS One. 2014;9:e90559.

    Article  CAS  Google Scholar 

  112. Metreveli G, Philippe A, Schaumann GE. Disaggregation of silver nanoparticle homoaggregates in a river water matrix. Sci Tot Environ. 2015;535:35–44.

    Article  CAS  Google Scholar 

  113. Laborda F, Bolea E, Cepriá G, Gómez MT, Jiménez MS, Pérez-Arantegui J, et al. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples. Anal Chima Acta. 2016;904:10–32.

    Article  CAS  Google Scholar 

  114. Gray EP, Bruton TA, Higgins CP, Halden RU, Westerhoff P, Ranville JF. Analysis of gold nanoparticle mixtures: a comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS. J Anal At Spectrom. 2012;27:1532–9.

    Article  CAS  Google Scholar 

  115. Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, et al. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc. 2011;133:2525–34.

    Article  CAS  Google Scholar 

  116. Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA. What the cell ‘sees’ in bionanoscience. J Am Chem Soc. 2010;132:5761–8.

    Article  CAS  Google Scholar 

  117. Contado C, Mejia J, Garcia O, Piret JP, Dumortier E, Toussaint O, et al. Physicochemical and toxicological evaluation of silica nanoparticles suitable for food and consumer products collected by following the EC recommendation. Anal Bioanal Chem. 2016;408:271–86.

    Article  CAS  Google Scholar 

  118. Dudkiewicz A, Tiede K, Loeschner K, Jensen LHS, Jensen E, Wierzbicki R, et al. Characterization of nanomaterials in food by electron microscopy. TrAC-Trends Anal Chem. 2011;30:28–43.

    Article  CAS  Google Scholar 

  119. Dudkiewicz A, Boxall ABA, Chaudhry Q, Mølhave K, Tiede K, Hofmann P, et al. Uncertainties of size measurements in electron microscopy characterization of nanomaterials in foods. Food Chem. 2015;176:472–9.

    Article  CAS  Google Scholar 

  120. Luo P, Morrison I, Dudkiewicz A, Tiede K, Boyes E, O’Toole P, et al. Visualization and characterization of engineered nanoparticles in complex environmental and food matrices using atmospheric scanning electron microscopy. J Microsc. 2013;250:32–41.

    Article  CAS  Google Scholar 

  121. Pace HE, Rogers NJ, Jaromilek C, Coleman VA, Higgins CP, Ranville JF. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma-mass spectrometry. Anal Chem. 2011;83:9361–9.

    Article  CAS  Google Scholar 

  122. Laborda F, Jiménez-Lamana J, Bolea E, Castillo JR. Selective identification, characterization and determination of dissolved silver(I) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2011;26:1362–71.

    Article  CAS  Google Scholar 

  123. Hineman A, Stephan C. Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality. J Anal At Spectrom. 2014;29:1252–7.

    Article  CAS  Google Scholar 

  124. Lee S, Bi X, Reed RB, Ranville JF, Herckes P, Westerhoff P. Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ Sci Technol. 2014;48:10291–300.

    Article  CAS  Google Scholar 

  125. Commission of the European Communities. Commission Decision 2002/657/EC of 14 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off J Eur Communities. 2002;L221:8ff.

    Google Scholar 

  126. Linsinger TPJ, Peters R, Weigel S. International interlaboratory study for sizing and quantification of Ag nanoparticles in food simulants by single-particle ICPMS. Anal Bioanal Chem. 2014;406:3835–43.

    Article  CAS  Google Scholar 

  127. International Standardization Organization. ISO/TS 19590: Nanotechnologies — size distribution and concentration of inorganic nanoparticles in aqueous media via single particle inductively coupled plasma mass spectrometry; 2015.

  128. Huynh KA, Siska E, Heithmar E, Tadjiki S, Pergantis SA. Detection and quantification of silver nanoparticles at environmentally relevant concentrations using asymmetric flow field-flow fractionation online with single particle inductively coupled plasma mass spectrometry. Anal Chem. 2016;88:4909–16.

    Article  CAS  Google Scholar 

  129. Vasco F, Hawe A, Jiskoot W. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27:796–810.

    Article  CAS  Google Scholar 

  130. Gallego-Urrea JA, Tuoriniemi J, Hassellöv M. Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples. Trends Anal Chem. 2011;30:473–83.

    Article  CAS  Google Scholar 

  131. Allmaier G, Laschober C, Szymanski W. Nano ES GEMMA and PDMA, new tools for the analysis of nanobioparticles—protein complexes, lipoparticles, and viruses. J Am Soc Mass Spectrom. 2008;19:1062–8.

    Article  CAS  Google Scholar 

  132. Allmaier G, Maißer A, Laschober C, Messner P, Szymanski WW. Parallel differential mobility analysis for electrostatic characterization and manipulation of nanoparticles and viruses. TrAC-Trends Anal Chem. 2011;30:123–32.

    Article  CAS  Google Scholar 

  133. Weiss VU, Kerul L, Kallinger P, Szymanski WW, Marchetti-Deschmann M, Allmaier G. Liquid phase separation of proteins based on electrophoretic effects in an electrospray setup during sample introduction into a gas-phase electrophoretic mobility molecular analyzer (CE–GEMMA/CE–ES–DMA). Anal Chim Acta. 2014;841:91–8.

    Article  CAS  Google Scholar 

  134. Demortier G. Application of nuclear microprobes to material of archaeological interest. Nucl Instrum Methods Phys Res B. 1988;30:434–43.

    Article  Google Scholar 

  135. Lozano O, Olivier T, Dogné JM, Lucas S. The use of PIXE for engineered nanomaterials quantification in complex matrices. J Phys Conf Ser. 2013;429:012010.

    Article  CAS  Google Scholar 

  136. Lozano O, Mejia J, Masereel B, Toussaint O, Lison D, Lucas S. Development of a PIXE analysis method for the determination of the biopersistence of SiC and TiC nanoparticles in rat lungs. Nanotoxicology. 2012;6:263–71.

    Article  CAS  Google Scholar 

  137. Lozano O, Mejia J, Tabarrant T, Masereel B, Dogné JM, Toussaint O, et al. Quantification of nanoparticles in aqueous food matrices using particle-induced X-ray emission. Anal Bioanal Chem. 2012;403:2835–41.

    Article  CAS  Google Scholar 

  138. Ricci F, Volpe G, Micheli L, Palleschi G. A review on novel developments and applications of immunosensors in food analysis. Anal Chim Acta. 2007;605:111–12924.

    Article  CAS  Google Scholar 

  139. Dabrio M, Rodríguez AR, Bordin G, Bebianno MJ, De Ley M, Sestáková I, et al. Recent developments in quantification methods for metallothionein. J Inorg Biochem. 2002;88:123–34.

    Article  CAS  Google Scholar 

  140. Grombe R, Charoud-Got J, Emteborg H, Linsinger TPJ, Seghers J, Wagner S, et al. Production of reference materials for the detection and size determination of silica nanoparticles in tomato soup. Anal Bioanal Chem. 2014;406:3895–907.

    CAS  Google Scholar 

  141. Grombe R, Allmaier G, Charoud-Got J, Dudkiwwicz A, Emteborg H, Hofmann T, et al. Feasibility of the development of reference materials for the detection of Ag nanoparticles in food: neat dispersions and spiked chicken meat. Accred Qual Assur. 2015;20:3–16.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Suman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattarozzi, M., Suman, M., Cascio, C. et al. Analytical approaches for the characterization and quantification of nanoparticles in food and beverages. Anal Bioanal Chem 409, 63–80 (2017). https://doi.org/10.1007/s00216-016-9946-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9946-5

Keywords

Navigation