Skip to main content

Advertisement

Log in

Improved electrochemiluminescence labels for heterogeneous microbead immunoassay

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ruthenium(II) complexes with carboxylic acid as a bioconjugatable group, i.e., [Ru(bathophenanthroline disulfonate)(2,2′-bipyridine)(4-methyl-4′-(3-carboxypropyl)-2,2′-bipyridine)]0, (C49H38N6O8S2Ru), and [Ru(bathophenanthroline disulfonate)2(4-methyl-4′-(3-carboxypropyl)-2,2′-bipyridine)]2− · 2Na+, (C63H44N6O14S4RuNa2) were characterized spectroscopically and electrochemically. As potential labels for electrochemiluminescence (ECL) immunoassays, the ECL intensities of the free labels in homogenous aqueous buffer solutions were compared under a condition that is similar to the one employed by a commercial clinical immunoassay system. The two labels were found to be more emissive and, thus, can be detected at 10- 12 pM compared with 5× 10−12 pM of the label currently used in the commercial ECL system. Furthermore, the improved ECL emission of the free labels in homogenous solutions was proven to be translated into more intense ECL signal in heterogeneous sandwich immunoassay and, thus, leading to a lower limit of detection in immunoassay. The data obtained from these ECL labels shed light on the further development of ECL-based clinical immunoassay technology.

Electrochemiluminescence immunoassays were carried out with three different ruthenium(II) complex labels. It was proved that the higher signal intensities found with the novel labels in homogeneous solutions were maintained in heterogeneous sandwich format.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kricka LJ. Clinical applications of chemiluminescence. Anal Chim Acta. 2003;500(1/2):279–86.

    Article  CAS  Google Scholar 

  2. Zhao LX, Sun L, Chu XG. Chemiluminescence immunoassay. TracTrends Anal Chem. 2009;28(4):404–15.

    Article  CAS  Google Scholar 

  3. Fan AP, Cao ZJ, Li HA, Kai M, Lu JZ. Chemiluminescence platforms in immunoassay and DNA analyses. Anal Sci. 2009;25(5):587–97.

    Article  CAS  Google Scholar 

  4. Blackburn GF, Shah HP, Kenten JH, Leland J, Kamin RA, Link J. Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics. Clin Chem. 1991;37(9):1534–9.

    CAS  Google Scholar 

  5. Kenten JH, Casadei J, Link J, Lupold S, Willey J, Powell M. Rapid electrochemiluminescence assays of polymerase chain reaction products. Clin Chem. 1991;37(9):1626–32.

    CAS  Google Scholar 

  6. White HS, Bard AJ. Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the Ru (2,2′-bpy)3 2+-S2O8 2− system in acetonitrile-water solutions. J Am Chem Soc. 1982;104(25):6891–5.

    Article  CAS  Google Scholar 

  7. Bard AJ, editor. Electrogenerated Chemiluminescence. New York: Marcel Dekker Inc.; 2004.

    Google Scholar 

  8. Leland JK, Powell MJ. Electrogenerated chemiluminescence: an oxidative‐reduction type ECL reaction sequence using tripropyl amine. J Electrochem Soc. 1990;137(10):3127–31.

    Article  CAS  Google Scholar 

  9. Deaver DR. A new nonisotopic detection system for immunoassays. Nature. 1995;377(6551):758–60.

    Article  CAS  Google Scholar 

  10. Yang H, Leland JK, Yost D, Massey RJ. Electrochemiluminescence: a new diagnostic and research tool. Nat Biotechnol. 1994;12(2):193–4.

    Article  CAS  Google Scholar 

  11. Miao WJ. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108(7):2506–53.

    Article  CAS  Google Scholar 

  12. Hu LZ, Xu GB. Applications and trends in electrochemiluminescence. Chem Soc Rev. 2010;39(8):3275–304.

    Article  CAS  Google Scholar 

  13. van Ingen HE, Chan DW, Hubl W, Miyachi H, Molina R, Pitzel L. Analytical and clinical evaluation of an electrochemiluminescence immunoassay for the determination of CA 125. Clin Chem. 1998;44(12):2530–6.

    Google Scholar 

  14. Sanchez-Carbayo M, Espasa A, Chinchilla V, Herrero E, Megias J, Mira A. New electrochemiluminescent immunoassay for the determination of CYFRA 21–1: analytical evaluation and clinical diagnostic performance in urine samples of patients with bladder cancer. Clin Chem. 1999;45(11):1944–53.

    CAS  Google Scholar 

  15. Kulpa J, Wójcik E, Reinfuss M, Kołodziejski L. Carcinoembryonic antigen, squamous cell carcinoma antigen, CYFRA 21–1, and neuron-specific enolase in squamous cell lung cancer patients. Clin Chem. 2002;48(11):1931–7.

    CAS  Google Scholar 

  16. Thaler M, Metzger J, Schreiegg A, Denk B, Gleixner A, Hauptmann H. Immunoassay for sex hormone-binding globulin in undiluted serum is influenced by high-molecular-mass aggregates. Clin Chem. 2005;51(2):401–7.

    Article  CAS  Google Scholar 

  17. Prontera C, Zucchelli GC, Vittorini S, Storti S, Emdin M, Clerico A. Comparison between analytical performances of polyclonal and monoclonal electrochemiluminescence immunoassays for NT-proBNP. Clin Chim Acta. 2009;400(1):70–3.

    Article  CAS  Google Scholar 

  18. Yeh C-H, Tseng R, Hannah A, Estrov Z, Estey E, Kantarjian H. Clinical correlation of circulating heat shock protein 70 in acute leukemia. Leukemia Res. 2010;34(5):605–9.

    Article  CAS  Google Scholar 

  19. Tokel-Takvoryan NE, Hemingway RE, Bard AJ. Electrogenerated chemiluminescence. XIII. Electrochemical and electrogenerated chemiluminescence studies of ruthenium chelates. J Am Chem Soc. 1973;95(20):6582–9.

    Article  CAS  Google Scholar 

  20. Richter MM, Bard AJ, Kim W, Schmehl RH. Electrogenerated chemiluminescence. 62. Enhanced ECL in bimetallic assemblies with ligands that bridge isolated chromophores. Anal Chem. 1998;70(2):310–8.

    Article  CAS  Google Scholar 

  21. Lai RY, Chiba M, Kitamura N, Bard AJ. Electrogenerated chemiluminescence. 68. Detection of sodium ion with a ruthenium (II) complex with crown ether moiety at the 3,3'-positions on the 2,2'-bipyridine ligand. Anal Chem. 2002;74(3):551–3.

    Article  CAS  Google Scholar 

  22. Xu X-H, Bard AJ. Electrogenerated chemiluminescence. 55. Emission from adsorbed Ru (bpy) 3 2+ on graphite, platinum, and gold. Langmuir. 1994;10(7):2409–14.

    Article  CAS  Google Scholar 

  23. Kanoufi F, Bard AJ. Electrogenerated chemiluminescence. 65. An investigation of the oxidation of oxalate by tris (polypyridine) ruthenium complexes and the effect of the electrochemical steps on the emission intensity. J Phys Chem B. 1999;103(47):10469–80.

    Article  CAS  Google Scholar 

  24. Zu Y, Fan F-RF, Bard AJ. Inverted region electron transfer demonstrated by electrogenerated chemiluminescence at the liquid/liquid interface. J Phys Chem B. 1999;103(30):6272–6.

    Article  CAS  Google Scholar 

  25. Zu Y, Bard A. The role of direct coreactant oxidation in the ruthenium tris (2,2′) bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity. Anal Chem. 2000;72:3223–32.

    Article  CAS  Google Scholar 

  26. Gross EM, Armstrong NR, Wightman RM. Electrogenerated chemiluminescence from phosphorescent molecules used in organic light-emitting diodes. J Electrochem Soc. 2002;149(5):E137–42.

    Article  CAS  Google Scholar 

  27. Long TR, Richter MM. Electrogenerated chemiluminescence of the platinum (II) octaethylporphyrin/tri-n-propylamine system. Inorg Chim Acta. 2005;358(6):2141–5.

    Article  CAS  Google Scholar 

  28. Bruce D, Richter MM. Green electrochemiluminescence from ortho-metalated tris (2-phenylpyridine) iridium (III). Anal Chem. 2002;74(6):1340–2.

    Article  CAS  Google Scholar 

  29. Cole C, Muegge BD, Richter MM. Effects of poly (ethylene glycol) tert-octylphenyl ether on tris (2-phenylpyridine) iridium (III)-tripropylamine electrochemiluminescence. Anal Chem. 2003;75(3):601–4.

    Article  CAS  Google Scholar 

  30. Kapturkiewicz A, Angulo G. Extremely efficient electrochemiluminescence systems based on tris (2-phenylpyridine) iridium (III). Dalton Trans. 2003;3907–13.

  31. Kapturkiewicz A, Chen T-M, Laskar IR, Nowacki J. Electrochemiluminescence studies of the cyclometalated iridium (III) complexes with substituted 2-phenylbenzothiazole ligands. Electrochem Commun. 2004;6(8):827–31.

    Article  CAS  Google Scholar 

  32. Muegge BD, Richter MM. Multicolored electrogenerated chemiluminescence from ortho-metalated iridium (III) systems. Anal Chem. 2004;76(1):73–7.

    Article  CAS  Google Scholar 

  33. Kapturkiewicz A, Nowacki J, Borowicz P. Electrochemiluminescence studies of the cyclometalated iridium (III) L 2 Ir (acetyl acetonate) complexes. Electrochim Acta. 2005;50(16):3395–400.

    Article  CAS  Google Scholar 

  34. Kim JI, Shin I-S, Kim H, Lee J-K. Efficient electrogenerated chemiluminescence from cyclometalated iridium (III) complexes. J Am Chem Soc. 2005;127(6):1614–5.

    Article  CAS  Google Scholar 

  35. Shin I-S, Kim JI, Kwon T-H, Hong J-I, Lee J-K, Kim H. Efficient electrogenerated chemiluminescence from bis-cyclometalated iridium (III) complexes with substituted 2-phenylquinoline ligands. J Phys Chem C. 2007;111(5):2280–6.

    Article  CAS  Google Scholar 

  36. Bandini M, Bianchi M, Valenti G, Piccinelli F, Paolucci F, Monari M. Electrochemiluminescent functionalizable cyclometalated thiophene-based iridium (III) complexes. Inorg Chem. 2010;49(4):1439–48.

    Article  CAS  Google Scholar 

  37. Erler K (1998) Elecsys immunoassay systems using electrochemiluminescence detection. [Wiener Klinische Wochenschrift] 110:5–10

  38. Komori K, Takada K, Hatozaki O, Oyama N. Electrochemiluminescence of Ru(II) complexes immobilized on a magnetic microbead surface: distribution of magnetic microbeads on the electrode surface and effect of azide ion. Langmuir. 2007;23(11):6446–52.

    Article  CAS  Google Scholar 

  39. Zanarini S, Ciana LD, Marcaccio M, Marzocchi E, Paolucci F, Prodi L. Electrochemistry and electrochemiluminescence of [Ru(II)-tris (bathophenanthroline-disulfonate)]4− in aprotic conditions and aqueous buffers. J Phys Chem B. 2008;112(33):10188–93.

    Article  CAS  Google Scholar 

  40. Della Ciana L, Zanarini S, Perciaccante R, Marzocchi E, Valenti G. Neutral and dianionic Ru (II) bathophenanthrolinedisulfonate complexes: a route to enhance electrochemiluminescence performance in aqueous media. J Phys Chem C. 2010;114(8):3653–8.

    Article  CAS  Google Scholar 

  41. Staffilani M, Höss E, Giesen U, Schneider E, Hartl F, Josel H-P. Multimetallic ruthenium (II) complexes as electrochemiluminescent labels. Inorg Chem. 2003;42(24):7789–98.

    Article  CAS  Google Scholar 

  42. Yu L, Huang Z, Liu Y, Zhou M. Photophysics, electrochemistry and electrochemiluminescence of water-soluble biscyclometalated iridium (III) complexes. J Organometal Chem. 2012;718:14–21.

    Article  CAS  Google Scholar 

  43. Hermanson GT. Bioconjugate techniques. 2nd ed. San Diego: Elsevier Academic Press Inc; 2008.

    Google Scholar 

  44. Zhou M, Robertson GP, Roovers J. Comparative study of ruthenium (II) tris (bipyridine) derivatives for electrochemiluminescence application. Inorg Chem. 2005;44(23):8317–25.

    Article  CAS  Google Scholar 

  45. Bannwarth W, Schmidt D, Stallard RL, Hornung C, Knorr R, Müller F. Bathophenanthroline ruthenium (II) complexes as nonradioactive labels for oligonucleotides which can be measured by time‐resolved fluorescence techniques. Helvetica Chim Acta. 1988;71(8):2085–99.

    Article  CAS  Google Scholar 

  46. Bannwarth W. Bathophenanthroline Ru(II) complexes as nonradioactive labels for dideoxy DNA sequencing. Anal Biochem. 1989;181(2):216–9.

    Article  CAS  Google Scholar 

  47. Sigal GB, Tjiong H, Dong L, Masood MA, Titmas RC. ECL labels having improved non-specific binding properties, methods of using and kits containing the same. US Patents 6808939 B2. 2004.

  48. Ruthenium (II) tris(disulfolated bathophenanthroline) tetrasodium salt has even higher MLCT absorption, with an ε = 28400 M−1cm−1 at 464 nm. See its absorption and emission spectra in water. Available at: www.sunatech.com.cn/productshow.asp?selid=206. Accessed 2016.

  49. Miao WJ, Choi JP, Bard AJ. Electrogenerated chemiluminescence 69: the tris(2,2'-bipyridine)ruthenium(II), (Ru(bpy)3 2+)/tri-n-propylamine (TPrA) system revisited—a new route involving TPrA cation radicals. J Am Chem Soc. 2002;124(48):14478–85.

    Article  CAS  Google Scholar 

  50. Chen Z, Zu Y. Electrogenerated Chemiluminescence of the Tris (2, 2′-bipyridine) ruthenium (II)/Tri-n-propylamine (TPrA) system: crucial role of the long lifetime of TPrA•+ cation radicals suggested by electrode surface effects. J Phys Chem C. 2008;112(42):16663–7.

    Article  CAS  Google Scholar 

  51. Zhou M, Roovers J, Robertson GP, Grover CP. Multilabeling biomolecules at a single site. 1. Synthesis and characterization of a dendritic label for electrochemiluminescence assays. Anal Chem. 2003;75(23):6708–17.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhou.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Published in the topical collection Analytical Electrochemiluminescence with guest editors Hua Cui, Francesco Paolucci, Neso Sojic, and Guobao Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 462 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Liu, Y. & Zhou, M. Improved electrochemiluminescence labels for heterogeneous microbead immunoassay. Anal Bioanal Chem 408, 7095–7103 (2016). https://doi.org/10.1007/s00216-016-9583-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9583-z

Keywords

Navigation