Skip to main content

Advertisement

Log in

Label-free electrochemiluminescence biosensor for ultrasensitive detection of telomerase activity in HeLa cells based on extension reaction and intercalation of Ru(phen)3 2+

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Telomerase is one of the most common markers of human malignant tumors, such as uterine, stomach, esophageal, breast, colorectal, laryngeal squamous cell, thyroid, bladder, and so on. It is necessary to develop some sensitive but convenient detection methods for telomerase activity determination. In this study, a label-free and ultrasensitive electrochemiluminescence (ECL) biosensor has been fabricated to detect the activity of telomerase extracted from HeLa cells. Thiolated telomerase substrate (TS) primer was immobilized on the gold electrode surface through gold-sulfur (Au-S) interaction and then elongated by telomerase specifically. Then, it was hybridized with complementary DNA to form double-stranded DNA (dsDNA) fragments on the electrode surface, and Ru(phen)3 2+ has been intercalated into the dsDNA grooves to act as the ECL probe. The enhanced ECL intensity has a linear relationship with the number of HeLa cells in the range of 5∼5000 and with a detection limit of 2 HeLa cells. The proposed ECL biosensor has high specificity to telomerase in the presence of common interferents. The relative standard deviations (RSDs) were <5 % at 100 HeLa cells. The proposed method provides a convenient approach for telomerase-related cancer screening or diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blackburn EH. Switching and signaling at the telomere. Cell. 2001;106(6):661–73.

    Article  CAS  Google Scholar 

  2. Harley CB, Futcher AB, Greider CW. Telomeres shorten during aging of human fibroblasts. Nature. 1990;345(6274):458–60.

    Article  CAS  Google Scholar 

  3. Feng J, Funk WD, Wang SS, Weinrich SL, Avilion AA, Chiu CP, et al. The RNA component of human telomerase. Science. 1995;269(5228):1236–41.

    Article  CAS  Google Scholar 

  4. Cesare AJ, Reddel RR. Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet. 2010;11(5):319–30.

    Article  CAS  Google Scholar 

  5. Vaziri H, Benchimol S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol. 1998;8(5):279–82.

    Article  CAS  Google Scholar 

  6. Cong YS, Wright WE, Shay JW. Human telomerase and its regulation. Microbiol Mol Biol Rev. 2002;66(3):407–25.

    Article  CAS  Google Scholar 

  7. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266(5193):2011–5.

    Article  CAS  Google Scholar 

  8. Wright WE, Shay JW, Piatyszek MA. Modifications of a telomeric repeat amplification protocol (TRAP) result in increased reliability, linearity and sensitivity. Nucleic Acids Res. 1995;23(18):3794–5.

    Article  CAS  Google Scholar 

  9. Wege H, Chui MS, Le HT, Tran JM, Zern MA. SYBR Green real-time telomeric repeat amplification protocol for the rapid quantification of telomerase activity. Nucleic Acids Res. 2003;31(2):E3–3.

    Article  Google Scholar 

  10. Hou M, Xu D, Bjorkholm M, Gruber A. Real-time quantitative telomeric repeat amplification protocol assay for the detection of telomerase activity. Clin Chem. 2001;47(3):519–24.

    CAS  Google Scholar 

  11. Huard S, Moriarty TJ, Autexier C. The C terminus of the human telomerase reverse transcriptase is a determinant of enzyme processivity. Nucleic Acids Res. 2003;31(14):4059–70.

    Article  CAS  Google Scholar 

  12. De Cian A, Cristofari G, Reichenbach P, De Lemos E, Monchaud D, Teulade-Fichou MP, et al. Reevaluation of telomerase inhibition by quadruplex ligands and their mechanisms of action. Proc Natl Acad Sci U S A. 2007;104(44):17347–52.

    Article  Google Scholar 

  13. Kim NW, Wu F. Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucleic Acids Res. 1997;25(13):2595–7.

    Article  CAS  Google Scholar 

  14. Shao Z, Liu Y, Xiao H, Li G. PCR-free electrochemical assay of telomerase activity. Electrochem Commun. 2008;10(10):1502–4.

    Article  CAS  Google Scholar 

  15. Li Y, Liu B, Li X, Wei Q. Highly sensitive electrochemical detection of human telomerase activity based on bio-barcode method. Biosens Bioelectron. 2010;25(11):2543–7.

    Article  CAS  Google Scholar 

  16. Yang W, Zhu X, Liu Q, Lin Z, Qiu B, Chen G. Label-free detection of telomerase activity in HeLa cells using electrochemical impedance spectroscopy. Chem Commun. 2011;47(11):3129–31.

    Article  CAS  Google Scholar 

  17. Liu X, Li W, Hou T, Dong S, Yu G, Li F. Homogeneous electrochemical strategy for human telomerase activity assay at single-cell level based on T7 exonuclease-aided target recycling amplification. Anal Chem. 2015;87(7):4030–6.

    Article  CAS  Google Scholar 

  18. Wang WJ, Li JJ, Rui K, Gai PP, Zhang JR, Zhu JJ. Sensitive electrochemical detection of telomerase activity using spherical nucleic acids gold nanoparticles triggered mimic-hybridization chain reaction enzyme-free dual signal amplification. Anal Chem. 2015;87(5):3019–26.

    Article  CAS  Google Scholar 

  19. Li Y, Li X, Ji X, Li X. Formation of G-quadruplex-hemin DNAzyme based on human telomere elongation and its application in telomerase activity detection. Biosens Bioelectron. 2011;26(10):4095–8.

    Article  CAS  Google Scholar 

  20. Ma C, Xia K, Chen H, Zeng W, Han R, Tang J. Label-free highly sensitive detection of telomerase activity in cancer cell by chemiluminescence imaging. Mol Cell Probes. 2012;26(5):212–4.

    Article  CAS  Google Scholar 

  21. Zong S, Wang Z, Chen H, Cui Y. Ultrasensitive telomerase activity detection by telomeric elongation controlled surface enhanced Raman scattering. Small. 2013;9(24):4215–20.

    Article  CAS  Google Scholar 

  22. Duan R, Wang B, Zhang T, Zhang Z, Xu S, Chen Z, et al. Sensitive and bidirectional detection of urine telomerase based on the four detection-color states of difunctional gold nanoparticle probe. Anal Chem. 2014;86(19):9781–5.

    Article  CAS  Google Scholar 

  23. Tian L, Cronin TM, Weizmann Y. Enhancing-effect of gold nanoparticles on DNA strand displacement amplifications and their application to an isothermal telomerase assay. Chem Sci. 2014;5(11):4153–62.

    Article  CAS  Google Scholar 

  24. Zhang Y, Wang LJ, Zhang CY. Highly sensitive detection of telomerase using a telomere-triggered isothermal exponential amplification-based DNAzyme biosensor. Chem Commun. 2014;50(15):1909–11.

    Article  CAS  Google Scholar 

  25. Lou X, Zhuang Y, Zuo X, Jia Y, Hong Y, Min X, et al. Real-time, quantitative lighting-up detection of telomerase in urines of bladder cancer patients by AIEgens. Anal Chem. 2015;87(13):6822–7.

    Article  CAS  Google Scholar 

  26. Qian R, Ding L, Yan L, Lin M, Ju H. A robust probe for lighting up intracellular telomerase via primer extension to open a nicked molecular beacon. J Am Chem Soc. 2014;136(23):8205–8.

    Article  CAS  Google Scholar 

  27. Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004;104(6):3003–36.

    Article  CAS  Google Scholar 

  28. Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108(7):2506–53.

    Article  CAS  Google Scholar 

  29. Zhou X, Xing D, Zhu D, Jia L. Magnetic beads-based electrochemiluminescence assay for rapid and sensitive detection of telomerase activity. Electrochem Commun. 2008;10(4):564–7.

    Article  CAS  Google Scholar 

  30. Zhou X, Xing D, Zhu D, Jia L. Magnetic bead and nanoparticle based electrochemiluminescence amplification assay for direct and sensitive measuring of telomerase activity. Anal Chem. 2008;81(1):255–61.

    Article  Google Scholar 

  31. Wu L, Wang J, Feng L, Ren J, Wei W, Qu X. Label-free ultrasensitive detection of human telomerase activity using porphyrin-functionalized graphene and electrochemiluminescence technique. Adv Mater. 2012;24(18):2447–52.

    Article  CAS  Google Scholar 

  32. Zhang HR, Wang YZ, Wu MS, Feng QM, Shi HW, Chen HY, et al. Visual electrochemiluminescence detection of telomerase activity based on multifunctional Au nanoparticles modified with G-quadruplex deoxyribozyme and luminol. Chem Commun. 2014;50(83):12575–7.

    Article  CAS  Google Scholar 

  33. Zhang HR, Wu MS, Xu JJ, Chen HY. Signal-on dual-potential electrochemiluminescence based on luminol-gold bifunctional nanoparticles for telomerase detection. Anal Chem. 2014;86(8):3834–40.

    Article  CAS  Google Scholar 

  34. Liu Z, Qi W, Xu G. Recent advances in electrochemiluminescence. Chem Soc Rev. 2015;44(10):3117–42.

    Article  CAS  Google Scholar 

  35. Xu X-H, Yang HC, Mallouk TE, Bard AJ. Immobilization of DNA on an aluminum (III) alkanebisphosphonate thin film with electrogenerated chemiluminescent detection. J Am Chem Soc. 1994;116(18):8386–7.

    Article  CAS  Google Scholar 

  36. Wang J, Wu L, Ren J, Qu X. Visualizing human telomerase activity with primer-modified Au nanoparticles. Small. 2012;8(2):259–64.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was partly financially supported by the National Sciences Foundation of China (21275031, 21575027, 21305141), Program for New Century Excellent Talents in University (NCET-12-0619), Natural Sciences Funding of Fujian Province (2014J06005), and Program for Changjiang Scholars and Innovative Research Team in University (No. IRT15R11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Analytical Electrochemiluminescence with guest editors Hua Cui, Francesco Paolucci, Neso Sojic, and Guobao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Yang, L., Yue, G. et al. Label-free electrochemiluminescence biosensor for ultrasensitive detection of telomerase activity in HeLa cells based on extension reaction and intercalation of Ru(phen)3 2+ . Anal Bioanal Chem 408, 7105–7111 (2016). https://doi.org/10.1007/s00216-016-9561-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9561-5

Keywords

Navigation