Skip to main content
Log in

Investigation of perfluorooctanoic acid induced DNA damage using electrogenerated chemiluminescence associated with charge transfer in DNA

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An electrogenerated chemiluminescence (ECL)-DNA sensor was designed and fabricated for the investigation of DNA damage by a potential environmental pollutant, perfluorooctanoic acid (PFOA). The ECL-DNA sensor consisted of a Au electrode that had a self-assembled monolayer of 15 base-pair double-stranded (ds) DNA oligonucleotides with covalently attached semiconductor CdSe quantum dots (QDs) at the distal end of the DNA. Characterization of the ECL-DNA sensor was conducted with X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), ECL, and cyclic voltammetry before and after the exposure of the sensor to PFOA. Consistent data revealed that the dsDNA on Au was severely damaged upon the incubation of the electrode in PFOA, causing significant increase in charge (or electron) transfer (CT) resistance within DNA strands. Consequently, the cathodic coreactant ECL responses of the Au/dsDNA-QDs electrode in the presence of K2S2O8 were markedly decreased. The strong interaction between DNA and PFOA via the hydrophobic interaction, especially the formation of F···H hydrogen bonds by insertion of the difluoro-methylene group of PFOA into the DNA base pairs, was believed to be responsible for the dissociation or loosening of dsDNA structure, which inhibited the CT through DNA. A linear relationship between the ECL signal of the sensor and the logarithmical concentration of PFOA displayed a dynamic range of 1.00 × 10−14–1.00 × 10−4 M, with a limit of detection of 1.00 × 10−15 M at a signal-to-noise ratio of 3.

Illustration of ECL detection of PFOA on a Au/dsDNA-QDs ECL-DNA sensor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Toyooka T, Ibuki Y. DNA damage induced by coexposure to PAHs and light. Environ Toxicol Pharmacol. 2007;23(2):256–63.

    Article  CAS  Google Scholar 

  2. Guruge KS, Yeung LWY, Yamanaka N, Miyazaki S, Lam PKS, Giesy JP, et al. Gene expression profiles in rat liver treated with perfluorooctanoic acid (PFOA). Toxicol Sci. 2006;89(1):93–107.

    Article  CAS  Google Scholar 

  3. Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004;104(6):3003–36.

    Article  CAS  Google Scholar 

  4. Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108(7):2506–53.

    Article  CAS  Google Scholar 

  5. Ding Z, Quinn B, Haram S, Pell L, Korgel B, Bard AJ. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science. 2002;296:1293.

    Article  CAS  Google Scholar 

  6. Zou G, Ju H. Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution. Anal Chem. 2004;76(23):6871–6.

    Article  CAS  Google Scholar 

  7. Jie G, Zhang J, Wang D, Cheng C, Chen H-Y, Zhu J-J. Electrochemiluminescence immunosensor based on CdSe nanocomposites. Anal Chem. 2008;80(11):4033–9.

    Article  CAS  Google Scholar 

  8. Myung N, Ding Z, Bard AJ. Electrogenerated chemiluminescence of CdSe nanocrystals. Nano Lett. 2002;2(11):1315–9.

    Article  CAS  Google Scholar 

  9. Yin Y, Alivisatos AP. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature. 2005;437(7059):664–70.

    Article  CAS  Google Scholar 

  10. Burda C, Chen X, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev. 2005;105(4):1025–102.

    Article  CAS  Google Scholar 

  11. Lei J, Ju H. Fundamentals and bioanalytical applications of functional quantum dots as electrogenerated emitters of chemiluminescence. TrAC Trends Anal Chem. 2011;30(8):1351–9.

    Article  CAS  Google Scholar 

  12. Huang H, Li J, Zhu J-J. Electrochemiluminescence based on quantum dots and their analytical application. Anal Methods. 2011;3(1):33–42.

    Article  CAS  Google Scholar 

  13. Wang J, Shan Y, Zhao W-W, Xu J-J, Chen H-Y. Gold nanoparticle enhanced electrochemiluminescence of CdS thin films for ultrasensitive thrombin detection. Anal Chem. 2011;83(11):4004–11.

    Article  CAS  Google Scholar 

  14. Drummond TG, Hill MG, Barton JK. Electrochemical DNA sensors. Nat Biotechnol. 2003;21(10):1192–9.

    Article  CAS  Google Scholar 

  15. Kelley SO, Barton JK. Electron transfer between bases in double helical DNA. Science. 1999;283(5400):375–81.

    Article  CAS  Google Scholar 

  16. Liu T, Barton JK. DNA Electrochemistry through the base pairs not the sugar-phosphate backbone. J Am Chem Soc. 2005;127(29):10160–1.

    Article  CAS  Google Scholar 

  17. Slinker JD, Muren NB, Renfrew SE, Barton JK. DNA charge transport over 34 nm. Nat Chem. 2011;3(3):228–33.

    Article  CAS  Google Scholar 

  18. Kelley SO, Holmlin RE, Stemp EDA, Barton JK. Photoinduced electron transfer in ethidium-modified DNA duplexes: dependence on distance and base stacking. J Am Chem Soc. 1997;119(41):9861–70.

    Article  CAS  Google Scholar 

  19. Kelley SO, Barton JK, Jackson NM, Hill MG. Electrochemistry of methylene blue bound to a DNA-modified electrode. Bioconjug Chem. 1997;8(1):31–7.

    Article  CAS  Google Scholar 

  20. Pheeney CG, Barton JK. DNA electrochemistry with tethered methylene blue. Langmuir. 2012;28(17):7063–70.

    Article  CAS  Google Scholar 

  21. Mui TP, Fuss JO, Ishida JP, Tainer JA, Barton JK. ATP-stimulated, DNA-mediated redox signaling by XPD, a DNA repair and transcription helicase. J Am Chem Soc. 2011;133(41):16378–81.

    Article  CAS  Google Scholar 

  22. Sontz PA, Mui TP, Fuss JO, Tainer JA, Barton JK. DNA charge transport as a first step in coordinating the detection of lesions by repair proteins. Proc Natl Acad Sci U S A. 2012;109(6):1856–61.

    Article  CAS  Google Scholar 

  23. Sontz PA, Muren NB, Barton JK. DNA charge transport for sensing and signaling. Acc Chem Res. 2012;45(10):1792–800.

    Article  CAS  Google Scholar 

  24. Muren NB, Olmon ED, Barton JK. Solution, surface, and single molecule platforms for the study of DNA-mediated charge transport. Phys Chem Chem Phys. 2012;14(40):13754–71.

    Article  CAS  Google Scholar 

  25. Wong ELS, Gooding JJ. Charge transfer through DNA: a selective electrochemical DNA biosensor. Anal Chem. 2006;78(7):2138–44.

    Article  CAS  Google Scholar 

  26. Guo X, Gorodetsky AA, Hone J, Barton JK, Nuckolls C. Conductivity of a single DNA duplex bridging a carbon nanotube gap. Nat Nanotechnol. 2008;3(3):163–7.

    Article  CAS  Google Scholar 

  27. Kelley SO, Boon EM, Barton JK, Jackson NM, Hill MG. Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Res. 1999;27(24):4830–7.

    Article  CAS  Google Scholar 

  28. Hall DB, Holmlin RE, Barton JK. Oxidative DNA damage through long-range electron transfer. Nature. 1996;382(6593):731–5.

    Article  CAS  Google Scholar 

  29. Husale S, Persson HHJ, Sahin O. DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets. Nature. 2009;462(7276):1075–8.

    Article  CAS  Google Scholar 

  30. Krafft MP. Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Adv Drug Deliv Rev. 2001;47(2–3):209–28.

    Article  CAS  Google Scholar 

  31. Nakata H, Kannan K, Nasu T, Cho H-S, Sinclair E, Takemura A. Perfluorinated contaminants in sediments and aquatic organisms collected from shallow water and tidal flat areas of the Ariake Sea, Japan: environmental fate of perfluorooctane sulfonate in aquatic ecosystems. Environ Sci Technol. 2006;40(16):4916–21.

    Article  CAS  Google Scholar 

  32. Kerger BD, Copeland TL, DeCaprio AP. Tenuous dose–response correlations for common disease states: case study of cholesterol and perfluorooctanoate/sulfonate (PFOA/PFOS) in the C8 health project. Drug Chem Toxicol. 2011;34(4):396–404.

    Article  CAS  Google Scholar 

  33. Kennedy Jr GL, Butenhoff JL, Olsen GW, O’Connor JC, Seacat AM, Perkins RG, et al. The toxicology of perfluorooctanoate. Crit Rev Toxicol. 2004;34(4):351–84.

    Article  CAS  Google Scholar 

  34. Lu L, Xu L, Kang T, Cheng S. Investigation of DNA damage treated with perfluorooctane sulfonate (PFOS) on ZrO2/DDAB active nano-order film. Biosens Bioelectron. 2012;35(1):180–5.

    Article  CAS  Google Scholar 

  35. Rogach AL, Kornowski A, Gao M, Eychmüller A, Weller H. Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J Phys Chem B. 1999;103(16):3065–9.

    Article  CAS  Google Scholar 

  36. Li Y, Han M, Bai H, Wu Y, Dai Z, Bao J. A sensitive electrochemical aptasensor based on water soluble CdSe quantum dots (QDs) for thrombin determination. Electrochim Acta. 2011;56(20):7058–63.

    Article  CAS  Google Scholar 

  37. Liu X, Guo L, Cheng L, Ju H. Determination of nitrite based on its quenching effect on anodic electrochemiluminescence of CdSe quantum dots. Talanta. 2009;78(3):691–4.

    Article  CAS  Google Scholar 

  38. Yu WW, Qu L, Guo W, Peng X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater. 2003;15(14):2854–60.

    Article  CAS  Google Scholar 

  39. Hermanson GT. Bioconjugate techniques. New York: Academic; 1996.

    Google Scholar 

  40. Petrovykh DY, Kimura-Suda H, Whitman LJ, Tarlov MJ. Quantitative analysis and characterization of DNA immobilized on gold. J Am Chem Soc. 2003;125(17):5219–26.

    Article  CAS  Google Scholar 

  41. Rieley H, Kendall GK, Zemicael FW, Smith TL, Yang S. X-ray studies of self-assembled monolayers on coinage metals. 1. Alignment and photooxidation in 1,8-octanedithiol and 1-octanethiol on Au. Langmuir. 1998;14(18):5147–53.

    Article  CAS  Google Scholar 

  42. Bain CD, Biebuyck HA, Whitesides GM. Comparison of self-assembled monolayers on gold: coadsorption of thiols and disulfides. Langmuir. 1989;5(3):723–7.

    Article  CAS  Google Scholar 

  43. Hao E, Sun H, Zhou Z, Liu J, Yang B, Shen J. Synthesis and optical properties of CdSe and CdSe/CdS nanoparticles. Chem Mater. 1999;11(11):3096–102.

    Article  CAS  Google Scholar 

  44. Katari JEB, Colvin VL, Alivisatos AP. X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. J Phys Chem. 1994;98(15):4109–17.

    Article  CAS  Google Scholar 

  45. Herne TM, Tarlov MJ. Characterization of DNA probes immobilized on gold surfaces. J Am Chem Soc. 1997;119(38):8916–20.

    Article  CAS  Google Scholar 

  46. Lee C-Y, Gong P, Harbers GM, Grainger DW, Castner DG, Gamble LJ. Surface coverage and structure of mixed DNA/alkylthiol monolayers on gold: characterization by XPS, NEXAFS, and fluorescence intensity measurements. Anal Chem. 2006;78(10):3316–25.

    Article  CAS  Google Scholar 

  47. Nordfors D, Ågren H. Calculation of core electron binding energies from structural formulas. J Electron Spectrosc Relat Phenom. 1991;56(1):1–11.

    Article  CAS  Google Scholar 

  48. Macdonald DD. Reflections on the history of electrochemical impedance spectroscopy. Electrochim Acta. 2006;51(8–9):1376–88.

    Article  CAS  Google Scholar 

  49. Chang B-Y, Park S-M. Electrochemical impedance spectroscopy. Annu Rev Anal Chem. 2010;3:207–29.

    Article  CAS  Google Scholar 

  50. Lisdat F, Schaefer D. The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem. 2008;391(5):1555–67.

    Article  CAS  Google Scholar 

  51. Orazem ME, Tribollet B, editors. Electrochemical impedance spectroscopy. Wiley; 2008.

  52. Park J-Y, Park S-M. DNA hybridization sensors based on electrochemical impedance spectroscopy as a detection tool. Sensors. 2009;9(12):9513–32.

    Article  CAS  Google Scholar 

  53. Yu D, Wang C, Guyot-Sionnest P. n-Type conducting CdSe nanocrystal solids. Science. 2003;300(5623):1277–80.

    Article  CAS  Google Scholar 

  54. Pittman TL, Miao W. Examination of electron transfer through DNA using electrogenerated chemiluminescence. J Phys Chem C. 2008;112(43):16999–7004.

    Article  CAS  Google Scholar 

  55. Miao W, Choi J-P. Coreactants. In: Bard AJ, editor. Electrogenerated chemiluminescence. New York: Marcel Dekker; 2004. p. 213–72.

    Google Scholar 

  56. So M, Hvastkovs EG, Schenkman JB, Rusling JF. Electrochemiluminescent/voltammetric toxicity screening sensor using enzyme-generated DNA damage. Biosens Bioelectron. 2007;23(4):492–8.

    Article  CAS  Google Scholar 

  57. Zhou L, Yang J, Estavillo C, Stuart JD, Schenkman JB, Rusling JF. Toxicity screening by electrochemical detection of DNA damage by metabolites generated in situ in ultrathin DNA–enzyme films. J Am Chem Soc. 2003;125(5):1431–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the financial support from the National Natural Science Foundation of China (No. 21005005, 21345005, and 21475006), Beijing Nova Program (2010B009), the Program for New Century Excellent Talents in University (NCET-12-0603), and the National Science Foundation CAREER award (CHE-0955878, WJM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liping Lu or Wujian Miao.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Analytical Electrochemiluminescence with guest editors Hua Cui, Francesco Paolucci, Neso Sojic, and Guobao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Guo, L., Li, M. et al. Investigation of perfluorooctanoic acid induced DNA damage using electrogenerated chemiluminescence associated with charge transfer in DNA. Anal Bioanal Chem 408, 7137–7145 (2016). https://doi.org/10.1007/s00216-016-9559-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9559-z

Keywords

Navigation