Skip to main content
Log in

Recent development of electrochemiluminescence sensors for food analysis

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Food quality and safety are closely related to human health. In the face of unceasing food safety incidents, various analytical techniques, such as mass spectrometry, chromatography, spectroscopy, and electrochemistry, have been applied in food analysis. High sensitivity usually requires expensive instruments and complicated procedures. Although these modern analytical techniques are sensitive enough to ensure food safety, sometimes their applications are limited because of the cost, usability, and speed of analysis. Electrochemiluminescence (ECL) is a powerful analytical technique that is attracting more and more attention because of its outstanding performance. In this review, the mechanisms of ECL and common ECL luminophores are briefly introduced. Then an overall review of the principles and applications of ECL sensors for food analysis is provided. ECL can be flexibly combined with various separation techniques. Novel materials (e.g., various nanomaterials) and strategies (e.g., immunoassay, aptasensors, and microfluidics) have been progressively introduced into the design of ECL sensors. By illustrating some selected representative works, we summarize the state of the art in the development of ECL sensors for toxins, heavy metals, pesticides, residual drugs, illegal additives, viruses, and bacterias. Compared with other methods, ECL can provide rapid, low-cost, and sensitive detection for various food contaminants in complex matrixes. However, there are also some limitations and challenges. Improvements suited to the characteristics of food analysis are still necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boyaci IH, Temiz HT, Genis HE, Acar Soykut E, Yazgan NN, Guven B, et al. Dispersive and FT-Raman spectroscopic methods in food analysis. RSC Adv. 2015;5(70):56606–24.

    Article  CAS  Google Scholar 

  2. García-Cañas V, Simó C, Herrero M, Ibáñez E, Cifuentes A. Present and future challenges in food analysis: foodomics. Anal Chem. 2012;84(23):10150–9.

    Article  CAS  Google Scholar 

  3. Ricci F, Volpe G, Micheli L, Palleschi G. A review on novel developments and applications of immunosensors in food analysis. Anal Chim Acta. 2007;605(2):111–29.

    Article  CAS  Google Scholar 

  4. Li Z, Yu Y, Li Z, Wu T. A review of biosensing techniques for detection of trace carcinogen contamination in food products. Anal Bioanal Chem. 2015;407(10):2711–26.

    Article  CAS  Google Scholar 

  5. Campas M, Garibo D, Prieto-Simon B. Novel nanobiotechnological concepts in electrochemical biosensors for the analysis of toxins. Analyst. 2012;137(5):1055–67.

    Article  CAS  Google Scholar 

  6. Amine A, Mohammadi H, Bourais I, Palleschi G. Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron. 2006;21(8):1405–23.

    Article  CAS  Google Scholar 

  7. Bahadır EB, Sezgintürk MK. Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal Biochem. 2015;478:107–20.

    Article  CAS  Google Scholar 

  8. Scognamiglio V, Arduini F, Palleschi G, Rea G. Biosensing technology for sustainable food safety. TrAC Trends Anal Chem. 2014;62:1–10.

    Article  CAS  Google Scholar 

  9. Sharma R, Ragavan KV, Thakur MS, Raghavarao KSMS. Recent advances in nanoparticle based aptasensors for food contaminants. Biosens Bioelectron. 2015;74:612–27.

    Article  CAS  Google Scholar 

  10. Kaufmann A. The current role of high-resolution mass spectrometry in food analysis. Anal Bioanal Chem. 2011;403(5):1233–49.

    Article  CAS  Google Scholar 

  11. Santos PM, Pereira-Filho ER, Rodriguez-Saona LE. Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis. Food Chem. 2013;138(1):19–24.

    Article  CAS  Google Scholar 

  12. Zhang Y, Huang Y, Zhai F, Du R, Liu Y, Lai K. Analyses of enrofloxacin, furazolidone and malachite green in fish products with surface-enhanced Raman spectroscopy. Food Chem. 2012;135(2):845–50.

    Article  CAS  Google Scholar 

  13. Qing X, Wu H, Nie C, Li Y, Yan X, Zhang X, et al. HPLC-DAD data coupled with second-order calibration method applied to food analysis: simultaneous determination of six benzoylurea insecticides in various fruit samples by selecting time region of chromatogram. Sci China Chem. 2013;56(11):1641–50.

    Article  CAS  Google Scholar 

  14. Rivellino SR, Hantao LW, Risticevic S, Carasek E, Pawliszyn J, Augusto F. Detection of extraction artifacts in the analysis of honey volatiles using comprehensive two-dimensional gas chromatography. Food Chem. 2013;141(3):1828–33.

    Article  CAS  Google Scholar 

  15. Ibáñez C, Simó C, García-Cañas V, Cifuentes A, Castro-Puyana M. Metabolomics, peptidomics and proteomics applications of capillary electrophoresis-mass spectrometry in Foodomics: a review. Anal Chim Acta. 2013;802:1–13.

    Article  CAS  Google Scholar 

  16. Ludwig SKJ, Zhu H, Phillips S, Shiledar A, Feng S, Tseng D, et al. Cellphone-based detection platform for rbST biomarker analysis in milk extracts using a microsphere fluorescence immunoassay. Anal Bioanal Chem. 2014;406(27):6857–66.

    Article  CAS  Google Scholar 

  17. Garcia-Febrero R, Valera E, Muriano A, Pividori M-I, Sanchez-Baeza F, Marco M-P. An electrochemical magneto immunosensor (EMIS) for the determination of paraquat residues in potato samples. Anal Bioanal Chem. 2013;405(24):7841–9.

    Article  CAS  Google Scholar 

  18. Govindhan M, Adhikari B-R, Chen A. Nanomaterials-based electrochemical detection of chemical contaminants. RSC Adv. 2014;4(109):63741–60.

    Article  CAS  Google Scholar 

  19. Palchetti I, Mascini M. Electroanalytical biosensors and their potential for food pathogen and toxin detection. Anal Bioanal Chem. 2008;391(2):455–71.

    Article  CAS  Google Scholar 

  20. Meneely JP, Ricci F, van Egmond HP, Elliott CT. Current methods of analysis for the determination of trichothecene mycotoxins in food. TrAC Trends Anal Chem. 2011;30(2):192–203.

    Article  CAS  Google Scholar 

  21. Hu L, Xu G. Applications and trends in electrochemiluminescence. Chem Soc Rev. 2010;39(8):3275–304.

    Article  CAS  Google Scholar 

  22. Dufford RT, Nightingale D, Gaddum LW. Luminescence of Grignard compounds in electric and magnetic fields, and related electrical phenomena. J Am Chem Soc. 1927;49(8):1858–64.

    Article  CAS  Google Scholar 

  23. Hercules DM. Chemiluminescence resulting from electrochemically generated species. Science. 1964;145(3634):808–9.

    Article  CAS  Google Scholar 

  24. Visco RE, Chandross EA. Electroluminescence in solutions of aromatic hydrocarbons. J Am Chem Soc. 1964;86(23):5350–1.

    Article  CAS  Google Scholar 

  25. Santhanam KSV, Bard AJ. Chemiluminescence of electrogenerated 9,10-diphenylanthracene anion radical1. J Am Chem Soc. 1965;87(1):139–40.

    Article  CAS  Google Scholar 

  26. Zhao W-W, Wang J, Zhu Y-C, Xu J-J, Chen H-Y. Quantum dots: electrochemiluminescent and photoelectrochemical bioanalysis. Anal Chem. 2015;87(19):9520–31.

    Article  CAS  Google Scholar 

  27. Zhou H, Liu J, Zhang S. Quantum dot-based photoelectric conversion for biosensing applications. TrAC Trends Anal Chem. 2015;67:56–73.

    Article  CAS  Google Scholar 

  28. Wu P, Hou X, Xu J-J, Chen H-Y. Electrochemically generated versus photoexcited luminescence from semiconductor nanomaterials: bridging the valley between two worlds. Chem Rev. 2014;114(21):11027–59.

    Article  CAS  Google Scholar 

  29. Poznyak SK, Talapin DV, Shevchenko EV, Weller H. Quantum dot chemiluminescence. Nano Lett. 2004;4(4):693–8.

    Article  CAS  Google Scholar 

  30. Ding S-N, Xu J-J, Chen H-Y. Enhanced solid-state electrochemiluminescence of CdS nanocrystals composited with carbon nanotubes in H2O2 solution. Chem Commun. 2006;34:3631–3.

    Article  CAS  Google Scholar 

  31. Zou G, Ju H. Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution. Anal Chem. 2004;76(23):6871–6.

    Article  CAS  Google Scholar 

  32. Mei Y-L, Wang H-S, Li Y-F, Pan Z-Y, Jia W-L. Electochemiluminescence of CdTe/CdS quantum dots with triproprylamine as coreactant in aqueous solution at a lower potential and its application for highly sensitive and selective detection of Cu2+. Electroanalysis. 2010;22(2):155–60.

    Article  CAS  Google Scholar 

  33. Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science. 2002;296(5571):1293–7.

    Article  CAS  Google Scholar 

  34. Miao W, Choi J-P, Bard AJ. Electrogenerated chemiluminescence 69: the tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)32+)/tri-n-propylamine (TPrA) system revisited—a new route Involving TPrA•+ cation radicals. J Am Chem Soc. 2002;124(48):14478–85.

    Article  CAS  Google Scholar 

  35. Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004;104(6):3003–36.

    Article  CAS  Google Scholar 

  36. Rivera VR, Gamez FJ, Keener WK, White JA, Poli MA. Rapid detection of Clostridium botulinum toxins A, B, E, and F in clinical samples, selected food matrices, and buffer using paramagnetic bead-based electrochemiluminescence detection. Anal Biochem. 2006;353(2):248–56.

    Article  CAS  Google Scholar 

  37. Gughelmo-Viret V, Thullier P. Comparison of an electrochemiluminescence assay in plate format over a colorimetric ELISA, for the detection of ricin B chain (RCA-B). J Immunol Methods. 2007;328(1-2):70–8.

    Article  CAS  Google Scholar 

  38. Poli MA, Rivera VR, Neal DD, Baden DG, Messer SA, Plakas SM, et al. An electrochemiluminescence-based competitive displacement immunoassay for the type-2 brevetoxins in oyster extracts. J AOAC Int. 2007;90(1):173–8.

    CAS  Google Scholar 

  39. Wang Z, Duan N, Hun X, Wu S. Electrochemiluminescent aptamer biosensor for the determination of ochratoxin A at a gold-nanoparticles-modified gold electrode using N-(aminobutyl)-N-ethylisoluminol as a luminescent label. Anal Bioanal Chem. 2010;398(5):2125–32.

    Article  CAS  Google Scholar 

  40. Brandon DL, Korn AM, Yang LL. Detection of ricin contamination in liquid egg by electrochemiluminescence immunosorbent assay. J Food Sci. 2012;77(4):T83–8.

    Article  CAS  Google Scholar 

  41. Cho CY, Keener WK, Garber EAE. Application of deadenylase electrochemiluminescence assay for ricin to foods in a plate format. J Food Prot. 2009;72(4):903–6.

    CAS  Google Scholar 

  42. Garber EAE, Walker JL, O’Brien TW. Detection of abrin in food using enzyme-linked immunosorbent assay and electrochemiluminescence technologies. J Food Prot. 2008;71(9):1868–74.

    Google Scholar 

  43. Cheng LW, Stanker LH. Detection of botulinum neurotoxin serotypes A and B using a chemiluminescent versus electrochemiluminescent immunoassay in food and serum. J Agric Food Chem. 2013;61(3):755–60.

    Article  CAS  Google Scholar 

  44. Lv X, Li Y, Cao W, Yan T, Li Y, Du B, et al. A label-free electrochemiluminescence immunosensor based on silver nanoparticle hybridized mesoporous carbon for the detection of aflatoxin B1. Sensors Actuators B Chem. 2014;202:53–9.

    Article  CAS  Google Scholar 

  45. Lv X, Li Y, Li Y, Cao W, Yan T, Hu L, et al. Ultrasensitive electrochemiluminescence immunosensor for detection of ochratoxin A based on gold nanoparticles-hybridized mesoporous carbon. Anal Methods. 2014;6(15):5766–70.

    Article  CAS  Google Scholar 

  46. Sachdeva A, Singh AK, Sharma SK. An electrochemiluminescence assay for the detection of bio threat agents in selected food matrices and in the screening of Clostridium botulinum outbreak strains associated with type A botulism. J Sci Food Agric. 2014;94(4):707–12.

    Article  CAS  Google Scholar 

  47. Yang M, Jiang B, Xie J, Xiang Y, Yuan R, Chai Y. Electrochemiluminescence recovery-based aptasensor for sensitive ochratoxin A detection via exonuclease-catalyzed target recycling amplification. Talanta. 2014;125:45–50.

    Article  CAS  Google Scholar 

  48. Zhao Y, Luo Y, Li T, Song Q. Au NPs driven electrochemiluminescence aptasensors for sensitive detection of fumonisin B1. RSC Adv. 2014;4(101):57709–14.

    Article  CAS  Google Scholar 

  49. Lv X, Li Y, Yan T, Pang X, Hu L, Du B, et al. An electrochemiluminescent immunosensor based on CdS-Fe3O4 nanocomposite electrodes for the detection of ochratoxin A. New J Chem. 2015;39(6):4259–64.

    Article  CAS  Google Scholar 

  50. Yang L, Zhang Y, Li R, Lin C, Guo L, Qiu B, et al. Electrochemiluminescence biosensor for ultrasensitive determination of ochratoxin A in corn samples based on aptamer and hyperbranched rolling circle amplification. Biosens Bioelectron. 2015;70:268–74.

    Article  CAS  Google Scholar 

  51. Zhang J-J, Kang T-F, Hao Y-C, Lu L-P, Cheng S-Y. Electrochemiluminescent immunosensor based on CdS quantum dots for ultrasensitive detection of microcystin-LR. Sensors Actuators B Chem. 2015;214:117–23.

    Article  CAS  Google Scholar 

  52. Yang M, Sun S, Kostov Y, Rasooly A. An automated point-of-care system for immunodetection of staphylococcal enterotoxin B. Anal Biochem. 2011;416(1):74–81.

    Article  CAS  Google Scholar 

  53. Meulenberg EP. Immunochemical methods for ochratoxin A detection: a review. Toxins. 2012;4(4):244.

    Article  CAS  Google Scholar 

  54. Needleman H. Lead poisoning. Annu Rev Med. 2004;55(1):209–22.

    Article  CAS  Google Scholar 

  55. Zahir F, Rizwi SJ, Haq SK, Khan RH. Low dose mercury toxicity and human health. Environ Toxicol Pharmacol. 2005;20(2):351–60.

    Article  CAS  Google Scholar 

  56. Haapakka KE, Kankare JJ. Application of the electrochemiluminescence of luminol to the determination of copper. Anal Chim Acta. 1980;118(2):333–40.

    Article  CAS  Google Scholar 

  57. Muegge BD, Richter MM. Electrochemiluminescent detection of metal cations using a ruthenium(II) bipyridyl complex containing a crown ether moiety. Anal Chem. 2002;74(3):547–50.

    Article  CAS  Google Scholar 

  58. Bruce D, Richter MM. Electrochemiluminescence in aqueous solution of a ruthenium(II) bipyridyl complex containing a crown ether moiety in the presence of metal ions. Analyst. 2002;127(11):1492–4.

    Article  CAS  Google Scholar 

  59. Cheng L, Liu X, Lei J, Ju H. Low-potential electrochemiluminescent sensing based on surface unpassivation of CdTe quantum dots and competition of analyte cation to stabilizer. Anal Chem. 2010;82(8):3359–64.

    Article  CAS  Google Scholar 

  60. Li L-L, Ji J, Fei R, Wang C-Z, Lu Q, Zhang J-R, et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater. 2012;22(14):2971–9.

    Article  CAS  Google Scholar 

  61. Cheng C, Huang Y, Tian X, Zheng B, Li Y, Yuan H, et al. Electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its application in selective sensing Cu2+. Anal Chem. 2012;84(11):4754–9.

    Article  CAS  Google Scholar 

  62. Ma F, Sun B, Qi H, Zhang H, Gao Q, Zhang C. A signal-on electrogenerated chemiluminescent biosensor for lead ion based on DNAzyme. Anal Chim Acta. 2011;683(2):234–41.

    Article  CAS  Google Scholar 

  63. Wu Y, Cai Z, Wu G, Rong M, Jiang Y, Yang C-J, et al. A novel signal-on DNAzyme-based electrochemiluminescence, sensor for Pb2+. Sensors Actuators B Chem. 2014;191:60–6.

    Article  CAS  Google Scholar 

  64. Zhang J, Wang M, Yao X, Deng A, Li J. Highly sensitive electroluminescence immunoassay for Hg(II) ions based on the use of CdSe quantum dots, the methylmercury-6-mercaptonicotinic acid-ovalbumin conjugate, and a specific monoclonal antibody. Microchim Acta. 2015;182(3-4):469–77.

    Article  CAS  Google Scholar 

  65. Tang C-X, Zhao Y, He X-W, Yin X-B. A “turn-on” electrochemiluminescent biosensor for detecting Hg2+ at femtomole level based on the intercalation of Ru(phen)3 2+ into ds-DNA. Chem Commun. 2010;46(47):9022–4.

    Article  CAS  Google Scholar 

  66. Zhu X, Chen L, Lin Z, Qiu B, Chen G. A highly sensitive and selective “signal-on” electrochemiluminescent biosensor for mercury. Chem Commun. 2010;46(18):3149–51.

    Article  CAS  Google Scholar 

  67. Yuan T, Liu Z, Hu L, Zhang L, Xu G. Label-free supersandwich electrochemiluminescence assay for detection of sub-nanomolar Hg2+. Chem Commun. 2011;47(43):11951–3.

    Article  CAS  Google Scholar 

  68. Gao A, Tang C-X, He X-W, Yin X-B. Electrochemiluminescent lead biosensor based on GR-5 lead-dependent DNAzyme for Ru(phen)3 2+ intercalation and lead recognition. Analyst. 2013;138(1):263–8.

    Article  CAS  Google Scholar 

  69. Zhu X, Lin Z, Chen L, Qiu B, Chen G. A sensitive and specific electrochemiluminescentl sensor for lead based on DNAzyme. Chem Commun. 2009;40:6050–2.

    Article  CAS  Google Scholar 

  70. Hai H, Yang F, Li J. Electrochemiluminescence sensor using quantum dots based on a G-quadruplex aptamer for the detection of Pb2+. RSC Adv. 2013;3(32):13144–8.

    Article  CAS  Google Scholar 

  71. Zhang M, Ge L, Ge S, Yan M, Yu J, Huang J, et al. Three-dimensional paper-based electrochemiluminescence device for simultaneous detection of Pb2+ and Hg2+ based on potential-control technique. Biosens Bioelectron. 2013;41:544–50.

    Article  CAS  Google Scholar 

  72. Botchkareva AE, Eremin SA, Montoya A, Manclús JJ, Mickova B, Rauch P, et al. Development of chemiluminescent ELISAs to DDT and its metabolites in food and environmental samples. J Immunol Methods. 2003;283(1–2):45–57.

    Article  CAS  Google Scholar 

  73. Wilson R, Barker MH, Schiffrin DJ, Abuknesha R. Electrochemiluminescence flow injection immunoassay for atrazine. Biosens Bioelectron. 1997;12(4):277–86.

    Article  CAS  Google Scholar 

  74. Liu B, Ge Y, Zhang Y, Song Y, Chen Y, Wang S. Development of a simplified enhanced chemiluminescence enzyme linked immunosorbent assay (ECL-ELISA) for the detection of phosmet, azinphos-methyl and azinphos-ethyl residues in vegetable samples. Anal Methods. 2013;5(21):5938–43.

    Article  CAS  Google Scholar 

  75. Ridlen JS, Klopf GJ, Nieman TA. Determination of glyphosate and related compounds using HPLC with tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence detection. Anal Chim Acta. 1997;341(2–3):195–204.

    Article  CAS  Google Scholar 

  76. Gonzalez JM, Greenway GM, McCreedy T, Qijun S. Determination of morpholine fungicides using the tris(2,2′[prime or minute]-bipyridine) ruthenium(II) chemiluminescence reaction. Analyst. 2000;125(4):765–9.

    Article  CAS  Google Scholar 

  77. Liu S, Liu Y, Li J, Guo M, Pan W, Yao S. Determination of mefenacet by capillary electrophoresis with electrochemiluminescence detection. Talanta. 2006;69(1):154–9.

    Article  CAS  Google Scholar 

  78. Chiu H-Y, Lin Z-Y, Tu H-L, Whang C-W. Analysis of glyphosate and aminomethylphosphonic acid by capillary electrophoresis with electrochemiluminescence detection. J Chromatogr A. 2008;1177(1):195–8.

    Article  CAS  Google Scholar 

  79. Hsu C-C, Whang C-W. Microscale solid phase extraction of glyphosate and aminomethylphosphonic acid in water and guava fruit extract using alumina-coated iron oxide nanoparticles followed by capillary electrophoresis and electrochemiluminescence detection. J Chromatogr A. 2009;1216(49):8575–80.

    Article  CAS  Google Scholar 

  80. Wang Y, Xiao L, Cheng M. Determination of phenylureas herbicides in food stuffs based on matrix solid-phase dispersion extraction and capillary electrophoresis with electrochemiluminescence detection. J Chromatogr A. 2011;1218(50):9115–9.

    Article  CAS  Google Scholar 

  81. Zhou H, Gan N, Hou J, Li T, Cao Y. Enhanced electrochemiluminescence employed for the selective detection of methyl parathion based on a zirconia nanoparticle film modified electrode. Anal Sci. 2012;28(3):267.

    Article  CAS  Google Scholar 

  82. Luo S, Xiao H, Yang S, Liu C, Liang J, Tang Y. Ultrasensitive detection of pentachlorophenol based on enhanced electrochemiluminescence of Au nanoclusters/graphene hybrids. Sensors Actuators B Chem. 2014;194:325–31.

    Article  CAS  Google Scholar 

  83. Liang H, Song D, Gong J. Signal-on electrochemiluminescence of biofunctional CdTe quantum dots for biosensing of organophosphate pesticides. Biosens Bioelectron. 2014;53:363–9.

    Article  CAS  Google Scholar 

  84. Lin Z, Chen G. Determination of carbamates in nature water based on the enhancement of electrochemiluminescent of Ru(bpy)3 2+ at the multi-wall carbon nanotube-modified electrode. Talanta. 2006;70(1):111–5.

    Article  CAS  Google Scholar 

  85. Li H, Xie C, Fu X. Electrochemiluminescence sensor for sulfonylurea herbicide with molecular imprinting core–shell nanoparticles/chitosan composite film modified glassy carbon electrode. Sensors Actuators B Chem. 2013;181:858–66.

    Article  CAS  Google Scholar 

  86. Liu Q, Wang K, Huan J, Zhu G, Qian J, Mao H, et al. Graphene quantum dots enhanced electrochemiluminescence of cadmium sulfide nanocrystals for ultrasensitive determination of pentachlorophenol. Analyst. 2014;139(11):2912–8.

    Article  CAS  Google Scholar 

  87. Du X, Jiang D, Liu Q, Zhu G, Mao H, Wang K. Fabrication of graphene oxide decorated with nitrogen-doped graphene quantum dots and its enhanced electrochemiluminescence for ultrasensitive detection of pentachlorophenol. Analyst. 2015;140(4):1253–9.

    Article  CAS  Google Scholar 

  88. Du X, Jiang D, Hao N, Liu Q, Qian J, Dai L, et al. An ON1-OFF-ON2 electrochemiluminescence response: combining the intermolecular specific binding with a radical scavenger. Chem Commun. 2015;51(56):11236–9.

    Article  CAS  Google Scholar 

  89. Zheng X, Mei Y, Zhang Z. Flow-injection chemiluminescence determination of tetracyclines with in situ electrogenerated bromine as the oxidant. Anal Chim Acta. 2001;440(2):143–9.

    Article  CAS  Google Scholar 

  90. Pang Y-Q, Cui H, Zheng H-S, Wan G-H, Liu L-J, Yu X-F. Flow injection analysis of tetracyclines using inhibited Ru(bpy)3 2+/tripropylamine electrochemiluminescence system. Luminescence. 2005;20(1):8–15.

    Article  CAS  Google Scholar 

  91. Guo Z, Gai P. Development of an ultrasensitive electrochemiluminescence inhibition method for the determination of tetracyclines. Anal Chim Acta. 2011;688(2):197–202.

    Article  CAS  Google Scholar 

  92. Deng B, Xu Q, Lu H, Ye L, Wang Y. Pharmacokinetics and residues of tetracycline in crucian carp muscle using capillary electrophoresis on-line coupled with electrochemiluminescence detection. Food Chem. 2012;134(4):2350–4.

    Article  CAS  Google Scholar 

  93. Gu W, Xu Y, Lou B, Lyu Z, Wang E. One-step process for fabricating paper-based solid-state electrochemiluminescence sensor based on functionalized graphene. Electrochem Commun. 2014;38:57–60.

    Article  CAS  Google Scholar 

  94. Chen X, Zhao L, Tian X, Lian S, Huang Z, Chen X. A novel electrochemiluminescence tetracyclines sensor based on a Ru(bpy)3 2+-doped silica nanoparticles/Nafion film modified electrode. Talanta. 2014;129:26–31.

    Article  CAS  Google Scholar 

  95. Guo Z, Gai P, Hao T, Duan J, Wang S. Determination of Malachite Green residues in fish using a highly sensitive electrochemiluminescence method combined with molecularly imprinted solid phase extraction. J Agric Food Chem. 2011;59(10):5257–62.

    Article  CAS  Google Scholar 

  96. Huang B, Zhou X, Chen J, Wu G, Lu X. Determination of malachite green in fish based on magnetic molecularly imprinted polymer extraction followed by electrochemiluminescence. Talanta. 2015;142:228–34.

    Article  CAS  Google Scholar 

  97. Feng X, Gan N, Zhang H, Yan Q, Li T, Cao Y, et al. A novel “dual-potential” electrochemiluminescence aptasensor array using CdS quantum dots and luminol-gold nanoparticles as labels for simultaneous detection of malachite green and chloramphenicol. Biosens Bioelectron. 2015;74:587–93.

    Article  CAS  Google Scholar 

  98. Wan F, Yu J, Yang P, Ge S, Yan M. An electrochemiluminescence sensor for determination of durabolin based on CdTe QD films by layer-by-layer self-assembly. Anal Bioanal Chem. 2011;400(3):807–14.

    Article  CAS  Google Scholar 

  99. Wang S, Hao T, Yu X, Gai P, Guo Z. Development of electrochemiluminescent inhibition method for determination of gentian violet in aquatic water. Spectrochim Acta A. 2012;89:25–9.

    Article  CAS  Google Scholar 

  100. Wang S, Wei J, Hao T, Guo Z. Determination of ractopamine in pork by using electrochemiluminescence inhibition method combined with molecularly imprinted stir bar sorptive extraction. J Electroanal Chem. 2012;664:146–51.

    Article  CAS  Google Scholar 

  101. Zhou X, Xing D, Zhu D, Tang Y, Jia L. Development and application of a capillary electrophoresis–electrochemiluminescent method for the analysis of enrofloxacin and its metabolite ciprofloxacin in milk. Talanta. 2008;75(5):1300–6.

    Article  CAS  Google Scholar 

  102. Guo Z, Gai P, Hao T, Wang S, Wei D, Gan N. Determination of melamine in dairy products by an electrochemiluminescent method combined with solid-phase extraction. Talanta. 2011;83(5):1736–41.

    Article  CAS  Google Scholar 

  103. Liu F, Yang X, Sun S. Determination of melamine based on electrochemiluminescence of Ru(bpy)3 2+ at bare and single-wall carbon nanotube modified glassy carbon electrodes. Analyst. 2011;136(2):374–8.

    Article  CAS  Google Scholar 

  104. Cao H, Hu X, Hu C, Zhang Y, Jia N. A novel solid-state electrochemiluminescence sensor for melamine with Ru(bpy) 3 2+/mesoporous silica nanospheres/Nafion composite modified electrode. Biosens Bioelectron. 2013;41:911–5.

    Article  CAS  Google Scholar 

  105. Zhou L, Huang J, Yang L, Li L, You T. Enhanced electrochemiluminescence based on Ru(bpy)3 2+-doped silica nanoparticles and graphene composite for analysis of melamine in milk. Anal Chim Acta. 2014;824:57–63.

    Article  CAS  Google Scholar 

  106. Li Z, Wang Y, Kong W, Wang Z, Wang L, Fu Z. Ultrasensitive detection of trace amount of clenbuterol residue in swine urine utilizing an electrochemiluminescent immunosensor. Sensors Actuators B Chem. 2012;174:355–8.

    Article  CAS  Google Scholar 

  107. Yan P, Tang Q, Deng A, Li J. Ultrasensitive detection of clenbuterol by quantum dots based electrochemiluminescent immunosensor using gold nanoparticles as substrate and electron transport accelerator. Sensors Actuators B Chem. 2014;191:508–15.

    Article  CAS  Google Scholar 

  108. Zhang J, Cai F, Deng A, Li J. CdSe quantum dots based electrochemiluminescence immunosensor with simple structure for ultrasensitive detection of salbutamol. Electroanaysis. 2014;26(4):873–81.

    Article  CAS  Google Scholar 

  109. Tang Q, Cai F, Deng A, Li J. Ultrasensitive competitive electrochemiluminescence immunoassay for the β-adrenergic agonist phenylethanolamine A using quantum dots and enzymatic amplification. Microchim Acta. 2015;182(1-2):139–47.

    Article  CAS  Google Scholar 

  110. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E. Biosensors for detection of pathogenic bacteria. Biosens Bioelectron. 1999;14(7):599–624.

    Article  CAS  Google Scholar 

  111. Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, et al. Food-borne diseases—the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol. 2010;139(Suppl):S3–15.

    Article  Google Scholar 

  112. Shelton DR, Van Kessel JAS, Wachtel MR, Belt KT, Karns JS. Evaluation of parameters affecting quantitative detection of Escherichia coli O157 in enriched water samples using immunomagnetic electrochemiluminescence. J Microbiol Meth. 2003;55(3):717–25.

    Article  Google Scholar 

  113. Yang H, Wang Y, Qi H, Gao Q, Zhang C. Electrogenerated chemiluminescence biosensor incorporating ruthenium complex-labelled concanavalin A as a probe for the detection of Escherichia coli. Biosens Bioelectron. 2012;35(1):376–81.

    Article  CAS  Google Scholar 

  114. Li Z, Yang H, Sun L, Qi H, Gao Q, Zhang C. Electrogenerated chemiluminescence biosensors for the detection of pathogenic bacteria using antimicrobial peptides as capture/signal probes. Sensorors Actuators B Chem. 2015;210:468–74.

    Article  CAS  Google Scholar 

  115. Long Y, Zhou X, Xing D. Sensitive and isothermal electrochemiluminescence gene-sensing of Listeria monocytogenes with hyperbranching rolling circle amplification technology. Biosens Bioelectron. 2011;26(6):2897–904.

    Article  CAS  Google Scholar 

  116. Zhan F, Zhou X, Xing D. Rapid and sensitive electrochemiluminescence detection of rotavirus by magnetic primer based reverse transcription-polymerase chain reaction. Anal Chim Acta. 2013;761:71–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21175061, 21375050, and 21505055), the Natural Science Foundation of Jiangsu Province (No. BK20150486), and Research Foundation of Jiangsu University (15JDG145), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (No. PAPD-2014-37) and Qing Lan Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Wang.

Ethics declarations

Conflict of interest

The authors declare not having any conflict of interest in this publication.

Additional information

Published in the topical collection Analytical Electrochemiluminescence with guest editors Hua Cui, Francesco Paolucci, Neso Sojic, and Guobao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, N., Wang, K. Recent development of electrochemiluminescence sensors for food analysis. Anal Bioanal Chem 408, 7035–7048 (2016). https://doi.org/10.1007/s00216-016-9548-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9548-2

Keywords

Navigation