Analytical and Bioanalytical Chemistry

, Volume 408, Issue 17, pp 4547–4566 | Cite as

Determination of elemental impurities in pharmaceutical products and related matrices by ICP-based methods: a review

  • Juliano S. Barin
  • Paola A. Mello
  • Marcia F. Mesko
  • Fabio A. Duarte
  • Erico M. M. FloresEmail author
Part of the following topical collections:
  1. ABC Highlights: authored by Rising Stars and Top Experts


Interest in the determination of elemental impurities in pharmaceuticals has increased in recent years because of changes in regulatory requirements and the need for changing or updating the current limit tests recommended in pharmacopeias. Inductively coupled plasma (ICP) optical emission spectrometry and ICP mass spectrometry are suitable alternatives to perform multielemental analysis for this purpose. The main advantages and limitations of these techniques are described, covering the applications reported in the literature in the last 10 years mainly for active pharmaceutical ingredients, raw materials, and pharmaceutical dosage forms. Strategies used for sample preparation, including dissolution in aqueous or organic solvents, extraction, wet digestion and combustion methods are described, as well as direct solid analysis and ICP-based systems applied for speciation analysis. Interferences observed during the analysis of pharmaceutical products using ICP-based methods are discussed. Methods currently recommended by pharmacopeias for elemental impurities are also covered, showing that the use of ICP-based methods could be considered as a trend in the determination of these impurities in pharmaceuticals. However, the development of a general method that is accurate for all elemental impurities and the establishment of an official method are still challenges. In this regard, the main drawbacks and suitable alternatives are discussed.


Determination of elemental impurities Pharmacopoeia Atomic spectrometry Sample preparation Heavy metals Pharmaceutical analysis 



The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Gorog S. Identification in drug quality control and drug research. Trends Anal Chem. 2015;69:114–22.CrossRefGoogle Scholar
  2. 2.
    Reddy AVB, Jaafar J, Umar K, Majid ZA, Bin Aris A, Talib J, et al. Identification, control strategies, and analytical approaches for the determination of potential genotoxic impurities in pharmaceuticals: a comprehensive review. J Sep Sci. 2015;38(5):764–79.CrossRefGoogle Scholar
  3. 3.
    Gorog S. Drug safety, drug quality, drug analysis. J Pharm Biomed Anal. 2008;48(2):247–53.CrossRefGoogle Scholar
  4. 4.
    Gorog S. The importance and the challenges of impurity profiling in modern pharmaceutical analysis. Trends Anal Chem. 2006;25(8):755–7.CrossRefGoogle Scholar
  5. 5.
    Flores EMM. Microwave-assisted sample preparation for trace element determination. Amsterdam: Elsevier; 2014.Google Scholar
  6. 6.
    Mester Z, Sturgeon R. Sample preparation for trace element analysis, vol. XLI. Amsterdam: Elsevier; 2003.Google Scholar
  7. 7.
    Arruda MAZ. Trends in sample preparation. New York: Nova; 2007.Google Scholar
  8. 8.
    The United States Pharmacopeia. The National Formulary, USP 37/NF 32, The United States Pharmacopeial Convention, Rockville, Chapter 231, Heavy elements; 2014.Google Scholar
  9. 9.
    Brazilian Pharmacopeia - 5th Ed., Chapter Limit test for heavy metals, the assay method. National Sanitary Surveillance Agency - ANVISA; 2010.Google Scholar
  10. 10.
    The Pharmacopoeia of United States of America - 11th edition. Mack Printing Company; 1936.Google Scholar
  11. 11.
    Lewen N. The use of atomic spectroscopy in the pharmaceutical industry for the determination of trace elements in pharmaceuticals. J Pharm Biomed Anal. 2011;55(4):653–61.CrossRefGoogle Scholar
  12. 12.
    Barin JS, Tischer B, Picoloto RS, Antes FG, da Silva FEB, Paula FR, et al. Determination of toxic elements in tricyclic active pharmaceutical ingredients by ICP-MS: a critical study of digestion methods. J Anal At Spectrom. 2014;29(2):352–8.CrossRefGoogle Scholar
  13. 13.
    Muller ALH, Oliveira JSS, Mello PA, Muller EI, Flores EMM. Study and determination of elemental impurities by ICP-MS in active pharmaceutical ingredients using single reaction chamber digestion in compliance with USP requirements. Talanta. 2015;136:161–9.CrossRefGoogle Scholar
  14. 14.
    Lewen N, Mathew S, Schenkenberger M, Raglione T. A rapid ICP-MS screen for heavy metals in pharmaceutical compounds. J Pharm Biomed Anal. 2004;35(4):739–52.CrossRefGoogle Scholar
  15. 15.
    Janosova V, Sykorova M, Stroffekova O, Havranek E. Determination of selected elements by X-ray fluorescence spectrometry in liquid drug samples after the preconcentration with thioacetamide. J Anal Chem. 2010;65(1):56–63.CrossRefGoogle Scholar
  16. 16.
    Margui E, Fontas C, Buendia A, Hidalgo M, Queralt I. Determination of metal residues in active pharmaceutical ingredients according to European current legislation by using X-ray fluorescence spectrometry. J Anal At Spectrom. 2009;24(9):1253–7.CrossRefGoogle Scholar
  17. 17.
    Shaw BJ, Semin DJ, Rider ME, Beebe MR. Applicability of total reflection X-ray fluorescence (TXRF) as a screening platform for pharmaceutical inorganic impurity analysis. J Pharm Biomed Anal. 2012;63:151–9.CrossRefGoogle Scholar
  18. 18.
    Antosz FJ, Xiang Y, Diaz AR, Jensen AJ. The use of total reflectance X-ray fluorescence (TXRF) for the determination of metals in the pharmaceutical industry. J Pharm Biomed Anal. 2012;62:17–22.CrossRefGoogle Scholar
  19. 19.
    Bolzan RC, Rodrigues LF, Mattos JCP, Dressler V, Flores EMM. Chromium determination in pharmaceutical grade barium sulfate by solid sampling electrothermal atomic absorption spectrometry with Zeeman-effect background correction. Talanta. 2007;74(1):119–24.CrossRefGoogle Scholar
  20. 20.
    Resano M, del Rosario Florez M, Queralt I, Margui E. Determination of palladium, platinum and rhodium in used automobile catalysts and active pharmaceutical ingredients using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis. Spectrochim Acta B. 2015;105:38–46.CrossRefGoogle Scholar
  21. 21.
    Van Hoecke K, Catry C, Vanhaecke F. Optimization of sample preparation and a quadrupole ICP-MS measurement protocol for the determination of elemental impurities in pharmaceutical substances in compliance with USP guidelines. J Anal At Spectrom. 2012;27(11):1909–19.CrossRefGoogle Scholar
  22. 22.
    Tu Q, Wang T, Antonucci V. High-efficiency sample preparation with dimethylformamide for multi-element determination in pharmaceutical materials by ICP-AES. J Pharm Biomed Anal. 2010;52(2):311–5.CrossRefGoogle Scholar
  23. 23.
    Antes FG, Mesko MF, Barin JS, Moreira CM, Flores EMM, Dressler VL. Development of multi-elemental method for quality control of parenteral component solutions using ICP-MS. Microchem J. 2011;98(1):144–9.CrossRefGoogle Scholar
  24. 24.
    Cassap M. Using ICP-MS and ICP-OES to measure trace elemental impurities in pharmaceuticals in compliance with proposed pharmacopeia chapters. Spectroscopy. 2011;26(3):26–9.Google Scholar
  25. 25.
    Rao RN, Talluri MVNK. An overview of recent applications of inductively coupled plasma-mass spectrometry (ICP-MS) in determination of inorganic impurities in drugs and pharmaceuticals. J Pharm Biomed Anal. 2007;43(1):1–13.CrossRefGoogle Scholar
  26. 26.
    Huang JQ, Hu X, Zhang JR, Li KX, Yan Y, Xu XB. The application of inductively coupled plasma mass spectrometry in pharmaceutical and biomedical analysis. J Pharm Biomed Anal. 2006;40(2):227–34.CrossRefGoogle Scholar
  27. 27.
    Filipiak-Szok A, Kurzawa M, Cichosz M, Szlyk E. Elemental analysis of medicinal herbs and dietary supplements. Anal Lett. 2015;48(16):2626–38.CrossRefGoogle Scholar
  28. 28.
    Muller ALH, Muller EI, Barin JS, Flores EMM. Microwave-assisted digestion using diluted acids for toxic element determination in medicinal plants by ICP-MS in compliance with United States pharmacopeia requirements. Anal Methods. 2015;7(12):5218–25.CrossRefGoogle Scholar
  29. 29.
    Filipiak-Szok A, Kurzawa M, Szlyk E. Determination of toxic metals by ICP-MS in Asiatic and European medicinal plants and dietary supplements. J Trace Elem Med Biol. 2015;30:54–8.CrossRefGoogle Scholar
  30. 30.
    Yuan XD, Chapman RL, Wu ZQ. Analytical methods for heavy metals in herbal medicines. Phytochem Anal. 2011;22(3):189–98.CrossRefGoogle Scholar
  31. 31.
    Duffus JH. “Heavy metals” - a meaningless term? (IUPAC technical report). Pure Appl Chem. 2002;74(5):793–807.CrossRefGoogle Scholar
  32. 32.
    Hawkes SJ. What is a “heavy metal”? J Chem Educ. 1997;74(11):1374.CrossRefGoogle Scholar
  33. 33.
    Appenroth KJ. What are “heavy metals” in plant sciences? Acta Physiol Plant. 2010;32(4):615–9.CrossRefGoogle Scholar
  34. 34.
    International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Guideline for elemental impurities Q3D; 2014.Google Scholar
  35. 35.
    EMEA/CHMP/SWP/4446/2000 guideline on the specification limits for residues of metal catalysts or metal reagents. 2008.Google Scholar
  36. 36.
    Brazilian Pharmacopeia - 5th Ed., Chapter Limit test for heavy metals - atomic spectrometry method. National Sanitary Surveillance Agency - ANVISA; 2010.Google Scholar
  37. 37.
    The United States Pharmacopeia. The National Formulary, USP 37/NF 32, The United States Pharmacopeial Convention, Rockville, Chapter 232, Elemental impurities - limits; Chapter 233, Elemental impurities - procedures. 2014.Google Scholar
  38. 38.
    US Food and Drug Administration. Aluminum in large and small volume parenterals used in total parenteral nutrition. Fed Reg. 2000;65:4103–11.Google Scholar
  39. 39.
    NicDaeid N, Jayaram S, Kerr WJ. Elemental profiling using ICPMS of methylamphetamine hydrochloride prepared from proprietary medication using the Moscow and hypophosphorous synthesis. Sci Justice. 2013;53(3):278–85.CrossRefGoogle Scholar
  40. 40.
    Margui E, Van Meel K, Van Grieken R, Buendia A, Fontas C, Hidalgo M, et al. Method for the determination of Pd-catalyst residues in active pharmaceutical ingredients by means of high-energy polarized-beam energy dispersive X-ray fluorescence. Anal Chem. 2009;81(4):1404–10.CrossRefGoogle Scholar
  41. 41.
    Al-Ammar AS, Northington J. Accuracy improvement in the determination of palladium in pharmaceuticals by eliminating volatility error when using ICP-MS coupled with direct introduction of sample dissolved in organic solvents. J Anal At Spectrom. 2011;26(7):1531–3.CrossRefGoogle Scholar
  42. 42.
    Lin M-L, Jiang S-J. Determination of trace Cr, Mo, Pd, Cd, Pt and Pb in drug tablets by ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2011;26(9):1813–8.CrossRefGoogle Scholar
  43. 43.
    Simitchiev K, Stefanova V, Kmetov V, Andreev G, Kovachev N, Canals A. Microwave-assisted cloud point extraction of Rh, Pd and Pt with 2-mercaptobenzothiazole as preconcentration procedure prior to ICP-MS analysis of pharmaceutical products. J Anal At Spectrom. 2008;23(5):717–26.CrossRefGoogle Scholar
  44. 44.
    Jia XJ, Wang TB, Bu XD, Tu QA, Spencer S. Determination of ruthenium in pharmaceutical compounds by graphite furnace atomic absorption spectroscopy. J Pharm Biomed Anal. 2006;41(1):43–7.CrossRefGoogle Scholar
  45. 45.
    Iacocca RG, Toltl N, Allgeier M, Bustard B, Dong X, Foubert M, et al. Factors affecting the chemical durability of glass used in the pharmaceutical industry. AAPS PharmSciTech. 2010;11(3):1340–9.CrossRefGoogle Scholar
  46. 46.
    Dong X, Iacocca RG, Bustard BL, Kemp CAJ. Investigation of stainless steel corrosion in ultrahigh-purity water and steam systems by surface analytical techniques. J Mater Eng Perform. 2010;19(1):135–41.CrossRefGoogle Scholar
  47. 47.
    Iacocca RG, Allgeier M. Corrosive attack of glass by a pharmaceutical compound. J Mater Sci. 2007;42(3):801–11.CrossRefGoogle Scholar
  48. 48.
    Frey OR, Maier L. Polyethylene vials of calcium gluconate reduce aluminum contamination of TPN. Ann Pharmacother. 2000;34(6):811–2.CrossRefGoogle Scholar
  49. 49.
    Jenke DR, Story J, Lalani R. Extractables/leachables from plastic tubing used in product manufacturing. Int J Pharm. 2006;315(1-2):75–92.CrossRefGoogle Scholar
  50. 50.
    Van Caillie M, Degenhart H, Luijendijk I, Fernandes J. Zinc content of intravenous solutions. Lancet. 1978;312(8082):200–1.CrossRefGoogle Scholar
  51. 51.
    Chang JY, Xiao NJ, Zhu M, Zhang J, Hoff E, Russell SJ, et al. Leachables from saline-containing IV bags can alter therapeutic protein properties. Pharm Res. 2010;27(11):2402–13.CrossRefGoogle Scholar
  52. 52.
    Van Hoecke K, Catry C, Vanhaecke F. Determination of elemental impurities in leachate solutions from syringes using sector field ICP-mass spectrometry. J Pharm Biomed Anal. 2013;77:139–44.CrossRefGoogle Scholar
  53. 53.
    Silva Jr JB. Antimoniato de meglumina. Rev Soc Bras Med Trop. 2001;34:103–5.Google Scholar
  54. 54.
    Flores EMM, Silva FEB, Santos EP, Paula FR, Barin JS, Zanella R, et al. Determination of total arsenic by batch hydride generation atomic absorption spectrometry in injectable drugs containing high levels of Sb(V) as N-methylglucamine antimonate. Spectrochim Acta B. 2002;57(12):2095–102.CrossRefGoogle Scholar
  55. 55.
    Brazilian Pharmacopeia - 5th Ed., Meglumine antimoniate. National Sanitary Surveillance Agency - ANVISA; 2010.Google Scholar
  56. 56.
    Raghuram P, Raju IVS, Sriramulu J. Heavy metals testing in active pharmaceutical ingredients: an alternate approach. Pharmazie. 2010;65(1):15–8.Google Scholar
  57. 57.
    Lira S, Brush P, Senak L, Wu C-S, Malawer E. The use of inductively coupled plasma–optical emission spectroscopy in the determination of heavy metals in crospovidone and povidone as a replacement for the concomitant visual comparison test. Pharm Forum. 2008;34(6):1613–8.Google Scholar
  58. 58.
    Matusiewicz H, Slachcinski M. Method development for simultaneous multi-element determination of transition (Au, Ag) and noble (Pd, Pt, Rh) metal volatile species by microwave induced plasma spectrometry using a triple-mode microflow ultrasonic nebulizer and in situ chemical vapor generation. J Anal At Spectrom. 2010;25(8):1324–33.CrossRefGoogle Scholar
  59. 59.
    Matusiewicz H, Ślachciński M. Method development for simultaneous multi-element determination of hydride forming elements (As, Bi, Ge, Sb, Se, Sn) and Hg by microwave induced plasma-optical emission spectrometry using integrated continuous-microflow ultrasonic nebulizer-hydride generator sample introduction system. Microchem J. 2010;95(2):213–21.CrossRefGoogle Scholar
  60. 60.
    Rosenkranz B, Bettmer J. Microwave-induced plasma–optical emission spectrometry – fundamental aspects and applications in metal speciation analysis. Trends Anal Chem. 2000;19(2–3):138–56.CrossRefGoogle Scholar
  61. 61.
    United States Pharmacopeia. Ad Hoc Advisory Panel on Inorganic Impurities and Heavy Metals and USP Staff - stimuli to the revision process: general chapter on inorganic impurities: heavy metals. Pharmacop Forum. 2008;34(5).Google Scholar
  62. 62.
    United States Pharmacopeia - <232 > Elemental impurities-limits, <233 > elemental impurities-procedures. Pharmacop Forum. 201036;(1):197–206.Google Scholar
  63. 63.
    European Pharmacopoeia, Chapter 5.20. Metal catalysts or metal residues. European Directorate for the Quality of Medicines. 2012.Google Scholar
  64. 64.
    Montaser A. Inductively coupled plasma mass spectrometry. New York: Wiley-VCH; 1998.Google Scholar
  65. 65.
    Nolte J. ICP emission spectrometry - a practical guide. Wiley-VCH; 2003.Google Scholar
  66. 66.
    Fischer L, Zipfel B, Koellensperger G, Kovac J, Bilz S, Kunkel A, et al. Flow injection combined with ICP-MS for accurate high throughput analysis of elemental impurities in pharmaceutical products according to USP <232>/<233> J Pharm Biomed Anal. 2014;95:121–9.CrossRefGoogle Scholar
  67. 67.
    Vanhaecke F, Degryse P. Isotopic analysis: fundamentals and applications using ICP-MS. Weinheim: Wiley-VCH; 2012.CrossRefGoogle Scholar
  68. 68.
    Tanner SD, Baranov VI, Bandura DR. Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochim Acta B. 2002;57(9):1361–452.CrossRefGoogle Scholar
  69. 69.
    National Sanitary Surveillance Agency - ANVISA, Brazil, Reference Medicines. Available at:
  70. 70.
    Fraser MM, Beauchemin D. Effect of concomitant elements on the distribution of ions in inductively coupled plasma-mass spectroscopy. Part 1. Elemental ions. Spectrochim Acta B. 2000;55(11):1705–31.CrossRefGoogle Scholar
  71. 71.
    Todoli JL, Gras L, Hernandis V, Mora J. Elemental matrix effects in ICP-AES. J Anal At Spectrom. 2002;17(2):142–69.CrossRefGoogle Scholar
  72. 72.
    Wiltsche H, Winkler M, Tirk P. Matrix effects of carbon and bromine in inductively coupled plasma optical emission spectrometry. J Anal At Spectrom. 2015;30(10):2223–34.CrossRefGoogle Scholar
  73. 73.
    Grindlay G, Mora J, de Loos-Vollebregt M, Vanhaecke F. A systematic study on the influence of carbon on the behavior of hard-to-ionize elements in inductively coupled plasma-mass spectrometry. Spectrochim Acta B. 2013;86:42–9.CrossRefGoogle Scholar
  74. 74.
    Agatemor C, Beauchemin D. Matrix effects in inductively coupled plasma mass spectrometry: a review. Anal Chim Acta. 2011;706(1):66–83.CrossRefGoogle Scholar
  75. 75.
    Todoli JL, Mermet JM. Acid interferences in atomic spectrometry: analyte signal effects and subsequent reduction. Spectrochim Acta B. 1999;54(6):895–929.CrossRefGoogle Scholar
  76. 76.
    Grotti M, Leardi R, Frache R. Combined effects of inorganic acids in inductively coupled plasma optical emission spectrometry. Spectrochim Acta B. 2002;57(12):1915–24.CrossRefGoogle Scholar
  77. 77.
    Cheung Y, Chan GCY, Hieftje GM. Flagging matrix effects and system drift in organic-solvent-based analysis by axial-viewing inductively coupled plasma-atomic emission spectrometry. J Anal At Spectrom. 2013;28(2):241–50.CrossRefGoogle Scholar
  78. 78.
    Hu ZC, Hu SH, Gao S, Liu YS, Lin SL. Volatile organic solvent-induced signal enhancements in inductively coupled plasma-mass spectrometry: a case study of methanol and acetone. Spectrochim Acta B. 2004;59(9):1463–70.CrossRefGoogle Scholar
  79. 79.
    D’Ilio S, Violante N, Majorani C, Petrucci F. Dynamic reaction cell ICP-MS for determination of total As, Cr, Se and V in complex matrices: still a challenge? A review. Anal Chim Acta. 2011;698(1-2):6–13.CrossRefGoogle Scholar
  80. 80.
  81. 81.
    Boting K, Treu S, Leonhard P, Heiss C, Bings NH. First experimental proof of asymmetric charge transfer in ICP-MS/MS (ICP-QQQ-MS) through isotopically enriched oxygen as cell gas. J Anal At Spectrom. 2014;29(3):578–82.CrossRefGoogle Scholar
  82. 82.
    McCurdy E, Woods G. The application of collision/reaction cell inductively coupled plasma mass spectrometry to multi-element analysis in variable sample matrices, using He as a non-reactive cell gas. J Anal At Spectrom. 2004;19(5):607–15.CrossRefGoogle Scholar
  83. 83.
    Tu Q, Wang TB, Welch CJ. High-throughput metal screening in pharmaceutical samples by ICP-MS with automated flow injection using a modified HPLC configuration. J Pharm Biomed Anal. 2010;51(1):90–5.CrossRefGoogle Scholar
  84. 84.
    Slachcinski M. Recent achievements in sample introduction systems for use in chemical vapor generation plasma optical emission and mass spectrometry: from macro- to microanalytics. Appl Spectrosc Rev. 2014;49(4):271–321.CrossRefGoogle Scholar
  85. 85.
    Rudovica V, Viksna A, Actins A. Application of LA-ICP-MS as a rapid tool for analysis of elemental impurities in active pharmaceutical ingredients. J Pharm Biomed Anal. 2014;91:119–22.CrossRefGoogle Scholar
  86. 86.
    Kaczala S, Costa AB, Posselt EL, Barin JS, Flores EMM, Dressler VL. Element determination in pharmaceuticals using direct solid analysis-electrothermal vaporization inductively coupled plasma optical emission spectrometry. J Braz Chem Soc. 2015;26(3):475–83.Google Scholar
  87. 87.
    Limbeck A, Galler P, Bonta M, Bauer G, Nischkauer W, Vanhaecke F. Recent advances in quantitative LA-ICP-MS analysis: challenges and solutions in the life sciences and environmental chemistry. Anal Bioanal Chem. 2015;407(22):6593–617.CrossRefGoogle Scholar
  88. 88.
    Van Malderen SJM, van Elteren JT, Vanhaecke F. Development of a fast laser ablation-inductively coupled plasma-mass spectrometry cell for sub-μm scanning of layered materials. J Anal At Spectrom. 2015;30(1):119–25.CrossRefGoogle Scholar
  89. 89.
    Pozebon D, Dressler VL, Mesko MF, Matusch A, Becker JS. Bioimaging of metals in thin mouse brain section by laser ablation inductively coupled plasma mass spectrometry: novel online quantification strategy using aqueous standards. J Anal At Spectrom. 2010;25(11):1739–44.CrossRefGoogle Scholar
  90. 90.
    Bolzan RC, Moraes DP, Mattos JCP, Dressler VL, Flores EMM. Arsenic determination in pharmaceutical grade barium sulfate using direct solid sampling electrothermal atomic absorption spectrometry. J Braz Chem Soc. 2010;21(4):686–93.CrossRefGoogle Scholar
  91. 91.
    Moraes DP, Svoboda M, Matousek T, Flores EMM, Dedina J. Selective generation of substituted arsines-cryotrapping-atomic absorption spectrometry for arsenic speciation analysis in N-methylglucamine antimonate. J Anal At Spectrom. 2012;27(10):1734–42.CrossRefGoogle Scholar
  92. 92.
    Pohl P, Jamroz P, Welna M, Szymczycha-Madeja A, Greda K. Chemical-vapor generation of transition metals through the reaction with tetrahydroborate in recent achievements in analytical atomic spectrometry. Trends Anal Chem. 2014;59:144–55.CrossRefGoogle Scholar
  93. 93.
    Wu P, He LA, Zheng CB, Hou XD, Sturgeon RE. Applications of chemical vapor generation in non-tetrahydroborate media to analytical atomic spectrometry. J Anal At Spectrom. 2010;25(8):1217–46.CrossRefGoogle Scholar
  94. 94.
    He YH, Hou XD, Zheng CB, Sturgeon RE. Critical evaluation of the application of photochemical vapor generation in analytical atomic spectrometry. Anal Bioanal Chem. 2007;388(4):769–74.CrossRefGoogle Scholar
  95. 95.
    Rosolina SM, Chambers JQ, Lee CW, Xue ZL. Direct determination of cadmium and lead in pharmaceutical ingredients using anodic stripping voltammetry in aqueous and DMSO/water solutions. Anal Chim Acta. 2015;893:25–33.CrossRefGoogle Scholar
  96. 96.
    Nam KH, Isensee R, Infantino G, Putyera K, Wang XW. Microwave-induced combustion for ICP-MS: a generic approach to trace elemental analyses of pharmaceutical products. Spectroscopy. 2011;26(4):36–41.Google Scholar
  97. 97.
    Zachariadis GA, Michos CE. Development of a slurry introduction method for multi-element analysis of antibiotics by inductively coupled plasma atomic emission spectrometry using various types of spray chamber and nebulizer configurations. J Pharm Biomed Anal. 2007;43(3):951–8.CrossRefGoogle Scholar
  98. 98.
    Sims J, Smith A, Patel D, Batchelor R, Carreira J. Automated sample preparation for ICP analysis of active pharmaceutical ingredients and intermediates. J Lab Autom. 2011;16(5):377–80.CrossRefGoogle Scholar
  99. 99.
    Goncalves DA, Gu JY, dos Santos MC, Jones BT, Donati GL. Direct determination of chromium in empty medicine capsules by tungsten coil atomic emission spectrometry. J Anal At Spectrom. 2015;30(6):1395–9.CrossRefGoogle Scholar
  100. 100.
    Correale J, Chiquete E, Milojevic S, Frider N, Bajusz I. Assessing the potential impact of non-proprietary drug copies on quality of medicine and treatment in patients with relapsing multiple sclerosis: the experience with fingolimod. Drug Des Devel Ther. 2014;8:859–67.CrossRefGoogle Scholar
  101. 101.
    Dash K, Venkateswarlu G, Thangavel S, Rao SV, Chaurasia SC. Ultraviolet photolysis assisted mineralization and determination of trace levels of Cr, Cd, Cu, Sn, and Pb in isosulfan blue by ICP-MS. Microchem J. 2011;98(2):312–6.CrossRefGoogle Scholar
  102. 102.
    Stoving C, Jensen H, Gammelgaard B, Sturup S. Development and validation of an ICP-OES method for quantitation of elemental impurities in tablets according to coming US pharmacopeia chapters. J Pharm Biomed Anal. 2013;84:209–14.CrossRefGoogle Scholar
  103. 103.
    Venzago C, Popp M, Kovac J, Kunkel A. Pharmacopeial requirements for elemental impurities: a novel approach to the trace determination of osmium by oxidative pressure vessel sample digestion and measurement using inductively coupled plasma mass spectrometry (ICP-MS) after complexation and stabilisation. J Anal At Spectrom. 2013;28(7):1125–9.CrossRefGoogle Scholar
  104. 104.
    Wollein U, Bauer B, Habernegg R, Schramek N. Potential metal impurities in active pharmaceutical substances and finished medicinal products - a market surveillance study. Eur J Pharm Sci. 2015;77:100–5.CrossRefGoogle Scholar
  105. 105.
    Zachariadis GA, Sahanidou E. Analytical performance of a fast multi-element method for titanium and trace elements determination in cosmetics and pharmaceuticals by ICP-AES. Cent Eur J Chem. 2011;9(2):213–7.CrossRefGoogle Scholar
  106. 106.
    Mello PA, Pereira JSF, Mesko MF, Barin JS, Flores EMM. Sample preparation methods for subsequent determination of metals and non-metals in crude oil-a review. Anal Chim Acta. 2012;746:15–36.CrossRefGoogle Scholar
  107. 107.
    Cravotto G, Cintas P. Introduction to sonochemistry: a historical and conceptual overview. In: Chen D, Sharma S, Mudhoo A, editors. Handbook on applications of ultrasound - sonochemistry for sustainability. Boca Raton: CRC; 2012. p. 23–40.Google Scholar
  108. 108.
    Maciel JV, Knorr CL, Flores EMM, Muller EI, Mesko MF, Primel EG, et al. Feasibility of microwave-induced combustion for trace element determination in Engraulis anchoita by ICP-MS. Food Chem. 2014;145:927–31.CrossRefGoogle Scholar
  109. 109.
    Matusiewicz H. Wet digestion methods. In: Mester Z, Sturgeon R, editors. Sample preparation for trace element analysis, vol. XLI. Amsterdam: Elsevier; 2003. p. 193–234.CrossRefGoogle Scholar
  110. 110.
    Wasilewska M, Goessler W, Zischka M, Maichin B, Knapp G. Efficiency of oxidation in wet digestion procedures and influence from the residual organic carbon content on selected techniques for determination of trace elements. J Anal At Spectrom. 2002;17(9):1121–5.CrossRefGoogle Scholar
  111. 111.
    Flores EMM, Barin JS, Mesko MF, Knapp G. Sample preparation techniques based on combustion reactions in closed vessels - a brief overview and recent applications. Spectrochim Acta B. 2007;62(9):1051–64.CrossRefGoogle Scholar
  112. 112.
    Knapp G, Maichin B, Fecher P, Hasse S, Schramel P. Iodine determination in biological materials - Options for sample preparation and final determination. Fresenius J Anal Chem. 1998;362(6):508–13.CrossRefGoogle Scholar
  113. 113.
    Gelinas Y, Iyengar GV, Barnes RM. Total iodine in nutritional and biological reference materials using neutron activation analysis and inductively coupled plasma mass spectrometry. Fresenius J Anal Chem. 1998;362(5):483–8.CrossRefGoogle Scholar
  114. 114.
    Barbosa JTP, Santos CMM, Bispo LD, Lyra FH, David JM, Korn MGA, et al. Bromine, chlorine, and iodine determination in soybean and its products by ICP-MS after digestion using microwave-induced combustion. Food Anal Methods. 2013;6(4):1065–70.CrossRefGoogle Scholar
  115. 115.
    Hartwig CA, Toralles IG, Crizel MG, Muller ALH, Picoloto RS, Flores EMM, et al. Determination of bromine and iodine in shrimp and its parts by ICP-MS after decomposition using microwave-induced combustion. Anal Methods. 2014;6(18):7540–6.CrossRefGoogle Scholar
  116. 116.
    Mesko MF, Toralles IG, Crizel MG, Costa VC, Pires NRX, Pereira CMP, et al. Bromine and iodine determination in edible seaweed by icp-ms after digestion by microwaveinduced combustion. Quim Nova. 2014;37(6):964–8.Google Scholar
  117. 117.
    Muller ALH, Bizzi CA, Pereira JSF, Mesko MF, Moraes DP, Flores EMM, et al. Bromine and chlorine determination in cigarette tobacco using microwave-induced combustion and inductively coupled plasma optical emission spectrometry. J Braz Chem Soc. 2011;22(9):1649–55.Google Scholar
  118. 118.
    Picoloto RS, Doneda M, Flores ELM, Mesko MF, Flores EMM, Mello PA. Simultaneous determination of bromine and iodine in milk powder for adult and infant nutrition by plasma based techniques after digestion using microwave-induced combustion. Spectrochim Acta B. 2015;107:86–92.CrossRefGoogle Scholar
  119. 119.
    Mello PA, Barin JS, Duarte FA, Bizzi CA, Diehl LO, Muller EI, et al. Analytical methods for the determination of halogens in bioanalytical sciences: a review. Anal Bioanal Chem. 2013;40(24):7615–42.CrossRefGoogle Scholar
  120. 120.
    Muller ALH, Mello PA, Mesko MF, Duarte FA, Dressler VL, Muller EI, et al. Bromine and iodine determination in active pharmaceutical ingredients by ICP-MS. J Anal At Spectrom. 2012;27(11):1889–94.CrossRefGoogle Scholar
  121. 121.
    Meermann B, Sperling M. Hyphenated techniques as tools for speciation analysis of metal-based pharmaceuticals: developments and applications. Anal Bioanal Chem. 2012;403(6):1501–22.CrossRefGoogle Scholar
  122. 122.
    Feldmann J. What can the different current-detection methods offer for element speciation? Trends Anal Chem. 2005;24(3):228–42.CrossRefGoogle Scholar
  123. 123.
    Ackley KL, Caruso JA. Separation techniques - liquid chromatography. In: Cornelis R, Crews H, Caruso J, Heumann K, editors. Handbook of elemental speciation: techniques and methodology. Chichester: Wiley; 2003. p. 147–239.CrossRefGoogle Scholar
  124. 124.
    Alonso JIG, Encinar JR. Separation techniques - gas chromatography and other based methods. In: Cornelis R, Crews H, Caruso J, Heumann K, editors. Handbook of elemental speciation: techniques and methodology. Chichester: Wiley; 2003. p. 147–239.Google Scholar
  125. 125.
    Caruso JA, Wuilloud RG, Altamirano JC, Harris WR. Modeling and separation-detection methods to evaluate the speciation of metals for toxicity assessment. J Toxicol Environ Health B Crit Rev. 2006;9(1):41–61.CrossRefGoogle Scholar
  126. 126.
    Michalski R, Jablonska M, Szopa S, Lyko A. Application of ion chromatography with ICP-MS or MS detection to the determination of selected halides and metal/metalloids species. Crit Rev Anal Chem. 2011;41(2):133–50.CrossRefGoogle Scholar
  127. 127.
    Timerbaev AR. Capillary electrophoresis coupled to mass spectrometry for biospeciation analysis: critical evaluation. Trends Anal Chem. 2009;28(4):416–25.CrossRefGoogle Scholar
  128. 128.
    Liu LW, Zhou Q, Zheng CB, Hou XD, Wu L. Simultaneous speciation analysis of inorganic arsenic and antimony by on-line microwave-assisted oxidation and hydride generation-atomic fluorescence spectrometry. At Spectrosc. 2009;30(2):59–64.Google Scholar
  129. 129.
    Flores EMM, Santos EP, Barin JS, Zanella R, Dressler VL, Bittencourt CF. Determination of antimony(III) and total antimony by hydride generation atomic absorption spectrometry in samples of injectable drugs used for leishmaniasis treatment. J Anal At Spectrom. 2002;17(8):819–23.CrossRefGoogle Scholar
  130. 130.
    Flores EMM, Paula FR, Silva FEB, Moraes DP, Paniz JNG, Santos EP, et al. Selective determination of Sb(III) in drugs by flow injection hydride generation AAS. At Spectrosc. 2003;24(1):15–21.Google Scholar
  131. 131.
    Gallignani M, Ayala C, Brunetto MR, Burguera M, Burguera JL. Flow analysis-hydride generation-Fourier transform infrared spectrometric determination of antimony in pharmaceuticals. Talanta. 2003;59(5):923–34.CrossRefGoogle Scholar
  132. 132.
    Figueiredo EC, Luccas PO, Arruda MAZ. Determination of Sb(III) and total Sb in antileishmanial drugs by spectrophotometric flow-injection hydride generation. Anal Lett. 2006;39(3):543–54.CrossRefGoogle Scholar
  133. 133.
    Gonzalez MJG, Renedo OD, Martinez MJA. Simultaneous determination of antimony(III) and antimony(V) by UV-vis spectroscopy and partial least squares method (PLS). Talanta. 2005;68(1):67–71.CrossRefGoogle Scholar
  134. 134.
    Amoako PO, Uden PC, Tyson JF. Speciation of selenium dietary supplements; formation of S-(methylseleno)cysteine and other selenium compounds. Anal Chim Acta. 2009;652(1-2):315–23.CrossRefGoogle Scholar
  135. 135.
    Goenaga-Infante H, Sturgeon R, Turner J, Hearn R, Sargent M, Maxwell P, et al. Total selenium and selenomethionine in pharmaceutical yeast tablets: assessment of the state of the art of measurement capabilities through international intercomparison CCQM-P86. Anal Bioanal Chem. 2008;390(2):629–42.CrossRefGoogle Scholar
  136. 136.
    Wang WH, Chen ZL, Davey DE, Naidu R. Extraction of selenium species in pharmaceutical tablets using enzymatic and chemical methods. Microchim Acta. 2009;165(1-2):167–72.CrossRefGoogle Scholar
  137. 137.
    Hirner AV. Speciation of alkylated metals and metalloids in the environment. Anal Bioanal Chem. 2006;385(3):555–67.CrossRefGoogle Scholar
  138. 138.
    Ellis LA, Roberts DJ. Chromatographic and hyphenated methods for elemental speciation analysis in environmental media. J Chromatogr A. 1997;774(1-2):3–19.CrossRefGoogle Scholar
  139. 139.
    The United States Pharmacopeia. The National Formulary, USP 37/NF 32, The Official Compendia of Standards, Rockville, chapter 2232-Elemental contaminants in dietary supplements. 2014.Google Scholar
  140. 140.
    Li SX, Lin LX, Lin J, Zheng FY, Wang QX, Weng W. Speciation analysis, bioavailability and risk assessment of trace metals in herbal decoctions using a combined technique of in vitro digestion and biomembrane filtration as sample pretreatment method. Phytochem Anal. 2010;21(6):590–6.CrossRefGoogle Scholar
  141. 141.
    Lu XF, Nguyen N, Gabos S, Le XC. Arsenic speciation in cattail (Typha latifolia) using chromatography and mass spectrometry. Mol Nutr Food Res. 2009;53(5):566–71.CrossRefGoogle Scholar
  142. 142.
    Guedon D, Brum M, Seigneuret JM, Bizet D, Bizot S, Bourny E, et al. Impurities in herbal substances, herbal preparations and herbal medicinal products, IV. Heavy (toxic) metals. Nat Prod Commun. 2008;3(12):2107–22.Google Scholar
  143. 143.
    Kolachi NF, Kazi TG, Afridi HI, Khan S, Baig JA, Wadhwa SK, et al. Development of extraction methods for speciation analysis of selenium in aqueous extracts of medicinal plants. J AOAC Int. 2011;94(4):1069–75.Google Scholar
  144. 144.
    Sun HW, Qiao FX, Suo R, Li LX, Liang SX. Simultaneous determination of trace arsenic(III), antimony(III), total arsenic and antimony in Chinese medicinal herbs by hydride generation-double channel atomic fluorescence spectrometry. Anal Chim Acta. 2004;505(2):255–61.CrossRefGoogle Scholar
  145. 145.
    Weber G, Konieczynski P. Speciation of Mg, Mn and Zn in extracts of medicinal plants. Anal Bioanal Chem. 2003;375(8):1067–73.Google Scholar
  146. 146.
    Lukaszczyk L, Zyrnicki W. Speciation analysis of Sb(III) and Sb(V) in antileishmaniotic drug using Dowex 1 × 4 resin from hydrochloric acid solution. J Pharm Biomed Anal. 2010;52(5):747–51.CrossRefGoogle Scholar
  147. 147.
    Cabral LM, Juliano VNM, Dias LRS, Dornelas CB, Rodrigues CR, Villardi M, et al. Speciation of antimony (III) and antimony (V) using hydride generation for meglumine antimoniate pharmaceutical formulations quality control. Mem Inst Oswaldo Cruz. 2008;103(2):130–7.CrossRefGoogle Scholar
  148. 148.
    Seby F, Gleyzes C, Grosso O, Plau B, Donard OFX. Speciation of antimony in injectable drugs used for leishmaniasis treatment (Glucantime) by HPLC-ICP-MS and DPP. Anal Bioanal Chem. 2012;404(10):2939–48.CrossRefGoogle Scholar
  149. 149.
    Axelsson BO, Jornten-Karlsson M, Michelsen P, Abou-Shakra F. The potential of inductively coupled plasma mass spectrometry detection for high-performance liquid chromatography combined with accurate mass measurement of organic pharmaceutical compounds. Rapid Commun Mass Spectrom. 2001;15(6):375–85.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Juliano S. Barin
    • 1
  • Paola A. Mello
    • 2
  • Marcia F. Mesko
    • 3
  • Fabio A. Duarte
    • 2
  • Erico M. M. Flores
    • 2
    Email author
  1. 1.Departamento de Tecnologia e Ciência dos AlimentosUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.Departamento de QuímicaUniversidade Federal de Santa MariaSanta MariaBrazil
  3. 3.Centro de Ciências Químicas, Farmacêuticas e de AlimentosUniversidade Federal de PelotasPelotasBrazil

Personalised recommendations