Skip to main content
Log in

An iridium(III) complex as a versatile platform for molecular logic gates: an integrated full subtractor and 1:2 demultiplexer

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The iridium(III) complex 1 operates as a versatile platform for molecular logic gates fulfilling multiple logic functions depending on the inputs and the interrogation channels. In the UV-vis channel, it works as an INH, OR, and NINH gate with F and H2PO4 as inputs when following the absorbance at 244, 262, and 457 nm, respectively. More importantly, the combination of photoluminescence (PL) intensity ratio (I 700/I 600) and transmittance at 457 nm resulted in the setup of a 1:2 demultiplexer with F and CO2 as inputs. Finally, a three-input (BF3, F, and H2PO4 ) full subtractor was realized by integrating the electrochemiluminescence (ECL) intensity at 642 nm and the absorbance at 262 nm.

Multichannel detection and the proper combination of inputs are the key for the elaboration of sophisticated logic gates

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. de Silva AP, McClenaghan ND. Molecular-scale logic gates. Chem Eur J. 2004;10(3):574–86.

    Article  Google Scholar 

  2. de Silva AP, Uchiyama S. Molecular logic and computing. Nat Nanotechnol. 2007;2(7):399–410.

    Article  Google Scholar 

  3. de Silva AP. Molecular logic gate arrays. Chem Asian J. 2011;6(3):750–66.

    Article  Google Scholar 

  4. Pischel U. Chemical approaches to molecular logic elements for addition and subtraction. Angew Chem Int Ed Engl. 2007;46(22):4026–40.

    Article  CAS  Google Scholar 

  5. Pischel U. Digital operations with molecules—advances, challenges, and perspectives. Aust J Chem. 2010;63(2):148–64.

    Article  CAS  Google Scholar 

  6. Andréasson J, Pischel U. Smart molecules at work—mimicking advanced logic operations. Chem Soc Rev. 2010;39(1):174–88.

    Article  Google Scholar 

  7. Pischel U, Andréasson J, Gust D, Pais VF. Information processing with molecules—quo vadis? ChemPhysChem. 2013;14(1):28–46.

    Article  CAS  Google Scholar 

  8. Andréasson J, Pischel U. Molecules with a sense of logic: a progress report. Chem Soc Rev. 2015;44(5):1053–69.

    Article  Google Scholar 

  9. de Silva PA, Gunaratne NHQ, McCoy CP. A molecular photoionic AND gate based on fluorescent signalling. Nature. 1993;364(6432):42–4.

    Article  Google Scholar 

  10. Magri DC, Brown GJ, McClean GD, de Silva AP. Communicating chemical congregation: a molecular AND logic gate with three chemical inputs as a “lab-on-a-molecule” prototype. J Am Chem Soc. 2006;128(15):4950–1.

    Article  CAS  Google Scholar 

  11. Bozdemir OA, Guliyev R, Buyukcakir O, Selcuk S, Kolemen S, et al. Selective manipulation of ICT and PET Processes in styryl-Bodipy derivatives: applications in molecular logic and fluorescence sensing of metal ions. J Am Chem Soc. 2010;132(23):8029–36.

    Article  CAS  Google Scholar 

  12. Magri DC, Fava MC, Mallia CJ. A sodium-enabled ‘Pourbaix sensor’: a three-input AND logic gate as a ‘lab-on-a-molecule’ for monitoring Na+, pH and pE. Chem Commun. 2014;50(8):1009–11.

    Article  CAS  Google Scholar 

  13. Chhatwal M, Kumar A, Gupta RD, Awasthi SK. A pyrene-based optical probe capable of molecular computation using chemical input strings. RSC Adv. 2015;5(64):51678–81.

    Article  CAS  Google Scholar 

  14. Magri DC. Photoinduced electron transfer as a design concept for luminescent redox indicators. Analyst. 2015;140(22):7487–95.

    Article  CAS  Google Scholar 

  15. Margulies D, Felder CE, Melman G, Shanzer A. A molecular keypad lock: a photochemical device capable of authorizing password entries. J Am Chem Soc. 2007;129(2):347–54.

    Article  CAS  Google Scholar 

  16. Guo Z, Zhu W, Shen L, Tian H. A fluorophore capable of crossword puzzles and logic memory. Angew Chem Int Ed Engl. 2007;46(29):5549–53.

    Article  CAS  Google Scholar 

  17. Amelia M, Baroncini M, Credi A. A simple unimolecular multiplexer/demultiplexer. Angew Chem Int Ed Engl. 2008;47(33):6240–3.

    Article  CAS  Google Scholar 

  18. Kumar S, Luxami V, Saini R, Kaur D. Superimposed molecular keypad lock and half-subtractor implications in a single fluorophore. Chem Commun. 2009. doi:10.1039/b900131j.

  19. Andréasson J, Straight SD, Moore TA, Moore AL, Gust D. Molecular all-photonic encoder-decoder. J Am Chem Soc. 2008;130(33):11122–8.

    Article  Google Scholar 

  20. Remón P, Bälter M, Li S, Andréasson J, Pischel U. An all-photonic molecule-based D flip-flop. J Am Chem Soc. 2011;133(51):20742–5.

    Article  Google Scholar 

  21. Bälter M, Li S, Nilsson JR, Andréasson J, Pischel U. An all-photonic molecule-based parity generator/checker for error detection in data transmission. J Am Chem Soc. 2013;135(28):10230–3.

    Article  Google Scholar 

  22. Cui BB, Tang JH, Yao J, Zhong YW. A molecular platform for multistate near-infrared electrochromism and flip-flop, flip-flap-flop, and ternary memory. Angew Chem Int Ed Engl. 2015;54(32):9192–7.

    Article  CAS  Google Scholar 

  23. Erbas-Cakmak S, Bozdemir OA, Cakmak Y, Akkaya EU. Proof of principle for a molecular 1:2 demultiplexer to function as an autonomously switching theranostic device. Chem Sci. 2013;4(2):858–62.

    Article  CAS  Google Scholar 

  24. Ozlem S, Akkaya EU. Thinking outside the silicon box: molecular and logic as an additional layer of selectivity in singlet oxygen generation for photodynamic therapy. J Am Chem Soc. 2009;131(1):48–9.

    Article  CAS  Google Scholar 

  25. Wang J, Katz E. Digital biosensors with built-in logic for biomedical applications—biosensors based on a biocomputing concept. Anal Bioanal Chem. 2010;398(4):1591–603.

    Article  CAS  Google Scholar 

  26. Gupta T, van der Boom ME. Redox-active monolayers as a versatile platform for integrating boolean logic gates. Angew Chem Int Ed Engl. 2008;47(29):5322–6.

    Article  CAS  Google Scholar 

  27. Silvi S, Constable EC, Housecroft CE, Beves JE, Dunphy EL, et al. All-optical integrated logic operations based on chemical communication between molecular switches. Chem Eur J. 2009;15(1):178–85.

    Article  CAS  Google Scholar 

  28. Erbas-Cakmak S, Akkaya EU. Cascading of molecular logic gates for advanced functions: a self-reporting, activatable photosensitizer. Angew Chem Int Ed Engl. 2013;52(43):11364–8.

    Article  CAS  Google Scholar 

  29. Guliyev R, Ozturk S, Kostereli Z, Akkaya EU. From virtual to physical: integration of chemical logic gates. Angew Chem Int Ed Engl. 2011;50(42):9826–31.

    Article  CAS  Google Scholar 

  30. Andréasson J, Straight SD, Kodis G, Park CD, Hambourger M, et al. All-photonic molecular half-adder. J Am Chem Soc. 2006;128(50):16259–65.

    Article  Google Scholar 

  31. Andréasson J, Straight SD, Moore TA, Moore AL, Gust D. An all-photonic molecular keypad lock. Chem Eur J. 2009;15(16):3936–9.

    Article  Google Scholar 

  32. Singh AK, Yadav PK, Kumari N, Nagarajan R, Mishra L. A light/pH/multiple ion-driven smart switchable module for computing sequential logic operations via a resettable dual-optical readout. J Mater Chem C. 2015;3(46):12123–9.

    Article  CAS  Google Scholar 

  33. Liu Y, Jiang W, Zhang HY, Li CJ. A multifunctional arithmetical processor model integrated inside a single molecule. J Phys Chem B. 2006;110(29):14231–5.

    Article  CAS  Google Scholar 

  34. Andréasson J, Pischel U, Straight SD, Moore TA, Moore AL, Gust D. All-photonic multifunctional molecular logic device. J Am Chem Soc. 2011;133(30):11641–8.

    Article  Google Scholar 

  35. Luxami V, Kumar S. A differential ICT based molecular probe for multi-ions and multifunction logic circuits. Dalton Trans. 2012;41(15):4588–93.

    Article  CAS  Google Scholar 

  36. Chen SJ, Yang YH, Wu Y, Tian H, Zhu WH. Multi-addressable photochromic terarylene containing benzo[b]thiophene-1,1-dioxide unit as ethene bridge: multifunctional molecular logic gates on unimolecular platform. J Mater Chem. 2012;22(12):5486–94.

    Article  CAS  Google Scholar 

  37. Kumar A, Chhatwal M, Gupta RD, Awasthi SK. Chemically-driven “molecular logic circuit” based on osmium chromophore with a resettable multiple readout. Rsc Adv. 2015;5(7):5217–20.

    Article  CAS  Google Scholar 

  38. Singh AK. A fast and selective probe for detection of CN and F in water along with a sequential molecular logic circuit via resettable optical readout. RSC Adv. 2015;5(38):30187–91.

    Article  Google Scholar 

  39. Singh AK, Nagarajan R. A sequential logic gate-based “smart probe” for selective monitoring of Cu2+, Fe3+ and CN/F via differential analyses. Dalton Trans. 2015;44(46):19786–90.

    Article  CAS  Google Scholar 

  40. Ceroni P, Bergamini G, Balzani V. Old molecules, new concepts: [Ru(bpy)3]2+ as a molecular encoder-decoder. Angew Chem Int Ed Engl. 2009;48(45):8516–8.

    Article  CAS  Google Scholar 

  41. Cui BB, Yao CJ, Yao JN, Zhong YW. Electropolymerized films as a molecular platform for volatile memory devices with two near-infrared outputs and long retention time. Chem Sci. 2014;5(3):932–41.

    Article  CAS  Google Scholar 

  42. Schmittel M, Lin HW. Quadruple-channel sensing: a molecular sensor with a single type of receptor site for selective and quantitative multi-ion analysis. Angew Chem Int Ed Engl. 2007;46(6):893–6.

    Article  CAS  Google Scholar 

  43. Berni E, Gosse I, Badocco D, Pastore P, Sojic N, Pinet S. Differential photoluminescent and electrochemiluminescent detection of anions with a modified ruthenium(II)–bipyridyl complex. Chem Eur J. 2009;15(20):5145–52.

    Article  CAS  Google Scholar 

  44. Shu Q, Birlenbach L, Schmittel M. A bis(ferrocenyl)phenanthroline iridium(III) complex as a lab-on-a-molecule for cyanide and fluoride in aqueous solution. Inorg Chem. 2012;51(24):13123–7.

    Article  CAS  Google Scholar 

  45. Chen K, Schmittel M. An iridium(iii)-based lab-on-a-molecule for cysteine/homocysteine and tryptophan using triple-channel interrogation. Analyst. 2013;138(22):6742–5.

    Article  CAS  Google Scholar 

  46. Chen K, Bats JW, Schmittel M. Iridium-based lab-on-a-molecule for Hg2+ and ClO with two distinct light-up emissions. Inorg Chem. 2013;52(22):12863–5.

    Article  CAS  Google Scholar 

  47. Schmittel M, Qinghai S. A lab-on-a-molecule for anions in aqueous solution: using Kolbe electrolysis and radical methylation at iridium for sensing. Chem Commun. 2012;48(21):2707–9.

    Article  CAS  Google Scholar 

  48. Chen K, Schmittel M. A triple-channel lab-on-a-molecule for triple-anion quantification using an iridium(III)-imidazolium conjugate. Chem Commun. 2014;50(43):5756–9.

    Article  CAS  Google Scholar 

  49. Chen K, Shu Q, Schmittel M. Design strategies for lab-on-a-molecule probes and orthogonal sensing. Chem Soc Rev. 2015;44(1):136–60.

    Article  CAS  Google Scholar 

  50. Cui BB, Zhong YW, Yao J. Three-state near-infrared electrochromism at the molecular scale. J Am Chem Soc. 2015;137(12):4058–61.

    Article  CAS  Google Scholar 

  51. Zhan W, Crooks RM. Microelectrochemical logic circuits. J Am Chem Soc. 2003;125(33):9934–5.

    Article  CAS  Google Scholar 

  52. Lin WP, Tan Q, Liang H, Zhang KY, Liu SJ, et al. Phosphorescence switch and logic gate of iridium(III) complexes containing a triarylboron moiety triggered by fluoride and an electric field. J Mater Chem C. 2015;3(9):1883–7.

    Article  CAS  Google Scholar 

  53. Leung CH, Chan DS, He HZ, Cheng Z, Yang H, Ma DL. Luminescent detection of DNA-binding proteins. Nucleic Acids Res. 2012;40(3):941–55.

    Article  CAS  Google Scholar 

  54. Lu LH, Chan DSH, Kwong DWJ, He HZ, Leung CH, Ma DL. Detection of nicking endonuclease activity using a G-quadruplex-selective luminescent switch-on probe. Chem Sci. 2014;5(12):4561–8.

    Article  CAS  Google Scholar 

  55. Lin S, Gao W, Tian ZR, Yang C, Lu LH, et al. Luminescence switch-on detection of protein tyrosine kinase-7 using a G-quadruplex-selective probe. Chem Sci. 2015;6(7):4284–90.

    Article  CAS  Google Scholar 

  56. Liu Z, Sadler PJ. Organoiridium complexes: anticancer agents and catalysts. Acc Chem Res. 2014;47(4):1174–85.

    Article  CAS  Google Scholar 

  57. Margulies D, Melman G, Shanzer A. A molecular full-adder and full-subtractor, an additional step toward a moleculator. J Am Chem Soc. 2006;128(14):4865–71.

    Article  CAS  Google Scholar 

  58. Ding L, Zhang Z, Pei T, Liang S, Wang S, et al. Carbon nanotube field-effect transistors for use as pass transistors in integrated logic gates and full subtractor circuits. ACS Nano. 2012;6(5):4013–9.

    Article  CAS  Google Scholar 

  59. Lin HY, Chen JZ, Li HY, Yang CN. A simple three-input DNA-based system works as a full-subtractor. Sci Rep. 2015;5:10686.

    Article  CAS  Google Scholar 

  60. Ma DL, He HZ, Chan DSH, Leung CH. Simple DNA-based logic gates responding to biomolecules and metal ions. Chem Sci. 2013;4(9):3366–80.

    Article  CAS  Google Scholar 

  61. Liu Z, Qi W, Xu G. Recent advances in electrochemiluminescence. Chem Soc Rev. 2015;44(10):3117–42.

    Article  CAS  Google Scholar 

  62. Chang BY, Crooks JA, Chow KF, Mavré F, Crooks RM. Design and operation of microelectrochemical gates and integrated circuits. J Am Chem Soc. 2010;132(43):15404–9.

    Article  CAS  Google Scholar 

  63. Bard AJ. Electrogenerated chemiluminescence. New York: Marcel Dekker; 2004.

    Book  Google Scholar 

  64. Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004;104(6):3003–36.

    Article  CAS  Google Scholar 

  65. Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108(7):2506–53.

    Article  CAS  Google Scholar 

  66. Hu L, Xu G. Applications and trends in electrochemiluminescence. Chem Soc Rev. 2010;39(8):3275–304.

    Article  CAS  Google Scholar 

  67. Riduan SN, Zhang Y, Ying JY. Conversion of carbon dioxide into methanol with silanes over N-heterocyclic carbene catalysts. Angew Chem Int Ed Engl. 2009;48(18):3322–5.

    Article  CAS  Google Scholar 

  68. Guo Z, Song NR, Moon JH, Kim M, Jun EJ, et al. A benzobisimidazolium-based fluorescent and colorimetric chemosensor for CO2. J Am Chem Soc. 2012;134(43):17846–9.

    Article  CAS  Google Scholar 

  69. He Y, Yu H. Multifunctional gold nanoparticles as signal transducers for fabrication of 1:2 molecular demultiplexer. Anal Bioanal Chem. 2015;407(22):6741–6.

    Article  CAS  Google Scholar 

  70. Darwish TA, Evans RA, James M, Malic N, Triani G, Hanley TL. CO2 triggering and controlling orthogonally multiresponsive photochromic systems. J Am Chem Soc. 2010;132(31):10748–55.

    Article  CAS  Google Scholar 

  71. Darwish TA, Evans RA, Hanley TL. Spiropyran, chromene and spirooxazine, mélange á trois: molecular logic systems through selective and reversible deactivation of photochromism mediated by CO2 gas. Dyes Pigments. 2012;92(2):817–24.

    Article  CAS  Google Scholar 

  72. Pan ZH, Luo GG, Zhou JW, Xia JX, Fang K, Wu RB. A simple BODIPY-aniline-based fluorescent chemosensor as multiple logic operations for the detection of pH and CO2 gas. Dalton Trans. 2014;43(22):8499–507.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the DFG (Schm 647/17-1) and the University of Siegen for generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schmittel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Analytical Electrochemiluminescence with guest editors Hua Cui, Francesco Paolucci, Neso Sojic, and Guobao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Schmittel, M. An iridium(III) complex as a versatile platform for molecular logic gates: an integrated full subtractor and 1:2 demultiplexer. Anal Bioanal Chem 408, 7077–7083 (2016). https://doi.org/10.1007/s00216-016-9443-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9443-x

Keywords

Navigation