Skip to main content
Log in

Electrogenerated chemiluminescence of tris(2,2'-bipyridine)ruthenium(II) using N-(3-aminopropyl)diethanolamine as coreactant

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Coreactant plays a critical role for the application of electrochemiluminescence (ECL). Herein, N-(3-aminopropyl)diethanolamine (APDEA) has been explored as a potential coreactant for enhancing tris(2,2'-bipyridyl)ruthenium(II) ECL. It is much more effective than tripropylamine at gold and platinum electrodes although it has one primary amine group besides a tertiary amine group. The presence of primary amine group and hydroxyl groups in APDEA promotes the oxidation rates of amine and thus remarkably increases ECL intensity. The ECL intensities of the Ru(bpy)3 2+/APDEA system are approximately 10 and 36 times stronger than that of Ru(bpy)3 2+/tripropylamine system and about 1.6 and 1.14 times stronger than that of Ru(bpy)3 2+/N-butyldiethanolamine system at Au and Pt electrodes, respectively. The ECL intensity of the Ru(bpy)3 2+/APDEA system is 2.42 times stronger than that of Ru(bpy)3 2+/N-butyldiethanolamine at glassy carbon electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bard AJ, editor. Electrogenerated chemiluminescence. New York: Marcel Dekker; 2004.

    Google Scholar 

  2. Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108(7):2506–53.

    Article  CAS  Google Scholar 

  3. Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004;104(6):3003–36.

    Article  CAS  Google Scholar 

  4. Hu L, Xu G. Applications and trends in electrochemiluminescence. Chem Soc Rev. 2010;39(8):3275–304.

    Article  CAS  Google Scholar 

  5. Fungo F, Wong K-T, Ku S-Y, Hung Y-Y, Bard AJ. Electrogenerated chemiluminescence. 81. Influence of donor and acceptor substituents on the ECL of a spirobifluorene-bridged bipolar system. J Phys Chem B. 2005;109(9):3984–9.

    Article  CAS  Google Scholar 

  6. Forster RJ, Bertoncello P, Keyes TE. Electrogenerated chemiluminescence. Annu Rev Anal Chem. 2009;2(1):359–85.

    Article  CAS  Google Scholar 

  7. Liu Z, Qi W, Xu G. Recent advances in electrochemiluminescence. Chem Soc Rev. 2015;44(10):3117–42.

    Article  CAS  Google Scholar 

  8. Huang R, Wei MY, Guo LH. Enhanced electrogenerated chemiluminescence of /tripropylamine system on indium tin oxide nanoparticle modified transparent electrode. J Electroanal Chem. 2011;656(1/2):136–9.

    Article  CAS  Google Scholar 

  9. Doeven EH, Zammit EM, Barbante GJ, Hogan CF, Barnett NW, Francis PS. Selective excitation of concomitant electrochemiluminophores: tuning emission color by electrode potential. Angew Chem Int Ed. 2012;51(18):4354–7.

    Article  CAS  Google Scholar 

  10. Fahnrich KA, Pravda M, Guilbault GG. Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta. 2001;54(4):531–59.

    Article  CAS  Google Scholar 

  11. Zhou L, Huang J, Yang L, Li L, You T. Enhanced electrochemiluminescence based on Ru(bpy)32 + -doped silica nanoparticles and graphene composite for analysis of melamine in milk. Anal Chim Acta. 2014;824:57–63.

    Article  CAS  Google Scholar 

  12. Xu Z, Guo Z, Dong S. Electrogenerated chemiluminescence biosensor with alcohol dehydrogenase and tris(2,2′-bipyridyl)ruthenium (II) immobilized in sol–gel hybrid material. Biosens Bioelectron. 2005;21(3):455–61.

    Article  CAS  Google Scholar 

  13. Zhang L, Dong S. Electrogenerated chemiluminescence sensors using Ru(bpy)3 2+ doped in silica nanoparticles. Anal Chem. 2006;78(14):5119–23.

    Article  CAS  Google Scholar 

  14. Yuan Y, Han S, Hu L, Parveen S, Xu G. Coreactants of tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence. Electrochim Acta. 2012;82:484–92.

    Article  CAS  Google Scholar 

  15. Choi JP, Bard AJ. Electrogenerated chemiluminescence (ECL) 79: reductive-oxidation ECL of tris(2,2′-bipyridine)ruthenium(II) using hydrogen peroxide as a coreactant in pH 7.5 phosphate buffer solution. Anal Chim Acta. 2005;541(1/2):141–8.

    Article  Google Scholar 

  16. Hong L-R, Chai Y-Q, Zhao M, Liao N, Yuan R, Zhuo Y. Highly efficient electrogenerated chemiluminescence quenching of PEI enhanced Ru(bpy)3 2+ nanocomposite by hemin and Au@CeO2 nanoparticles. Biosens Bioelectron. 2015;63:392–8.

    Article  CAS  Google Scholar 

  17. Yin XB, Sha BB, Zhang XH, He XW, Xie H. The factors affecting the electrochemiluminescence of tris(2,2’-bipyridyl)ruthenium(II)/tertiary amines. Electroanalysis. 2008;20:1085–91.

    Article  CAS  Google Scholar 

  18. Miao W, Choi JP, Bard AJ. Electrogenerated chemiluminescence 69: the tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)32+)/Tri-n-propylamine (TPrA) system revisited. A new route involving TPrA• + cation radicals. J Am Chem Soc. 2002;124(48):14478–85.

    Article  CAS  Google Scholar 

  19. Liu X, Shi L, Niu W, Li H, Xu G. Environmentally friendly and highly sensitive ruthenium(II) tris(2,2′-bipyridyl) electrochemiluminescent system using 2-(dibutylamino)ethanol as co-reactant. Angew Chem Int Ed. 2007;46(3):421–4.

    Article  CAS  Google Scholar 

  20. Zu YB, Bard AJ. Electrogenerated chemiluminescence 66: the role of direct coreactant oxidation in the ruthenium tris(2,2')bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity. Anal Chem. 2000;72:3223–32.

    Article  CAS  Google Scholar 

  21. Jonathan KL, Michael JP. Electrogenerated chemiluminescence: an oxidative‐reduction type ECL reaction sequence using tripropyl amine. J Electrochem Soc. 1990;137:3127–31.

    Article  Google Scholar 

  22. Huang B, Zhou X, Xue Z, Lu X. Electrochemiluminescence quenching of tris(2,2′-bipyridyl)ruthenium. TrAC-Trend Anal Chem. 2013;51:107–16.

    Article  CAS  Google Scholar 

  23. Kebede N, Francis PS, Barbante GJ, Hogan CF. Electrogenerated chemiluminescence of tris(2,2′-bipyridine)ruthenium(ii) using common biological buffers as co-reactant, pH buffer, and supporting electrolyte. Analyst (Cambridge, U K). 2015;140(21):7142–5.

    Article  CAS  Google Scholar 

  24. Noffsinger JB, Danielson ND. Generation of chemiluminescence upon reaction of aliphatic amines with tris(2,2'-bipyridine)ruthenium(III). Anal Chem. 1987;59(6):865–8.

    Article  CAS  Google Scholar 

  25. Han S, Niu W, Li H, Hu L, Yuan Y, Xu G. Effect of hydroxyl and amino groups on electrochemiluminescence activity of tertiary amines at low tris(2,2′-bipyridyl)ruthenium(II) concentrations. Talanta. 2010;81(1/2):44–7.

    Article  CAS  Google Scholar 

  26. Yin XB, Sha BV, He XW. Electrochemiluminescence from tris(2,2′-bipyridyl) ruthenium (II) in the presence of aminocarboxylic acid co-reactants. Sci China, Ser B: Chem. 2009;52:1394–401.

    Article  CAS  Google Scholar 

  27. Jackson WA, Lacourse WR, Dobberpuhl D, Johnson DC. The voltammetric response of ethanolamine at gold electrodes in alkaline media. Electroanalysis. 1991;3(7):607–16.

    Article  CAS  Google Scholar 

  28. Barnes KK, Mann CK. Electrochemical oxidation of primary aliphatic amines. J Org Chem. 1967;32(5):1474–9.

    Article  CAS  Google Scholar 

  29. Adenier A, Chehimi MM, Gallardo I, Pinson J, Vila N. Electrochemical oxidation of aliphatic amines and their attachment to carbon and metal surfaces. Langmuir. 2004;20:8243–53.

    Article  CAS  Google Scholar 

  30. Xue LL, Longhua Guo LH, Qiu B, Lin ZY, Chen GN. Mechanism for inhibition of Ru(bpy)3 2+/DBAE electrochemiluminescence system by dopamine. Electrochem Commun. 2009;11:1579–82.

    Article  CAS  Google Scholar 

  31. Knight AW, Greenway GM. Relationship between structural attributes and observed electrogenerated chemiluminescence (ECL) activity of tertiary amines as potential analytes for the tris(2,2-bipyridine)ruthenium(II) ECL reaction. A review. Analyst (Cambridge, U K). 1996;121(11):101R–6R.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was kindly supported by the National Natural Science Foundation of China (no. 21475123), the Chinese Academy of Sciences (CAS)-the Academy of Sciences for the Developing World (TWAS) President’s Fellowship Programme, CAS-TWAS Postgraduate Fellowship, and CAS President’s International Fellowship Initiative (PIFI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guobao Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published in the topical collection Analytical Electrochemiluminescence with guest editors Hua Cui, Francesco Paolucci, Neso Sojic, and Guobao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitte, S.A., Wang, C., Li, S. et al. Electrogenerated chemiluminescence of tris(2,2'-bipyridine)ruthenium(II) using N-(3-aminopropyl)diethanolamine as coreactant. Anal Bioanal Chem 408, 7059–7065 (2016). https://doi.org/10.1007/s00216-016-9409-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9409-z

Keywords

Navigation