Skip to main content
Log in

Enzyme-based logic gates and circuits—analytical applications and interfacing with electronics

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The paper is an overview of enzyme-based logic gates and their short circuits, with specific examples of Boolean AND and OR gates, and concatenated logic gates composed of multi-step enzyme-biocatalyzed reactions. Noise formation in the biocatalytic reactions and its decrease by adding a “filter” system, converting convex to sigmoid response function, are discussed. Despite the fact that the enzyme-based logic gates are primarily considered as components of future biomolecular computing systems, their biosensing applications are promising for immediate practical use. Analytical use of the enzyme logic systems in biomedical and forensic applications is discussed and exemplified with the logic analysis of biomarkers of various injuries, e.g., liver injury, and with analysis of biomarkers characteristic of different ethnicity found in blood samples on a crime scene. Interfacing of enzyme logic systems with modified electrodes and semiconductor devices is discussed, giving particular attention to the interfaces functionalized with signal-responsive materials. Future perspectives in the design of the biomolecular logic systems and their applications are discussed in the conclusion.

Various applications and signal-transduction methods are reviewed for enzyme-based logic systems

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

α-KTG:

α-Ketoglutaric acid

Abs:

Optical absorbance

ABTS:

2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

ABTSox :

Oxidized ABTS (colored product)

AcCh:

Acetylcholine

AcChE:

Acetylcholinesterase (enzyme EC 3.1.1.7)

ADH:

Alcohol dehydrogenase (enzyme EC 1.1.1.1)

ADP:

Adenosine 5'-diphosphate

Ala:

Alanine (amino acid)

ALT:

Alanine transaminase (enzyme EC 2.6.1.2)

Asc:

Ascorbic acid

ATP:

Adenosine 5'-triphosphate

Be:

Betaine (product of choline oxidation)

BuCh:

Butyrylcholine

ChO:

Choline oxidase (enzyme EC 1.1.3.17)

CK:

Creatine kinase (enzyme EC 2.7.3.2)

Crt:

Creatine

CrtP:

Creatine phosphate

DHA:

Dehydroascorbic acid (product of ascorbic acid oxidation)

EIS:

Electrolyte–insulator–semiconductor

G6PDH:

Glucose 6-phosphate dehydrogenase (enzyme EC 1.1.1.49)

GDH:

Glucose dehydrogenase (enzyme EC 1.1.1.47)

Glc:

Glucose

Glc6P:

Glucose-6-phosphate

Glc6PA:

Gluconate-6-phosphate acid (product of Glc6P oxidation)

GlcA:

Gluconic acid

GOx:

Glucose oxidase (enzyme EC 1.1.3.4)

Glu:

Glutamate (amino acid, salt form)

HK:

Hexokinase (enzyme EC 2.7.1.1)

HRP:

Horseradish peroxidase (enzyme EC 1.11.1.7)

ITO:

Indium tin oxide (electrode)

Lac:

Lactate

LDH:

Lactate dehydrogenase (enzyme EC 1.1.1.27)

MP-11:

Microperoxidase-11

MPh:

Maltose phosphorylase (enzyme EC 2.4.1.8)

NAD+ :

Nicotinamide adenine dinucleotide

NADH:

Nicotinamide adenine dinucleotide reduced

P4VP:

Poly(4-vinyl pyridine)

PEP:

Phospho(enol)pyruvic acid

Pi:

Inorganic phosphate

PK:

Pyruvate kinase (enzyme EC 2.7.1.40)

PQQ:

Pyrroloquinoline quinone

Pyr:

Pyruvate

Va :

Alternative voltage applied between the conducting support and reference electrode of the EIS device

Vbias :

Constant (bias) voltage applied between the conducting support and reference electrode of the EIS device

VFB :

Flat-band voltage of the EIS device

References

  1. Moore GE. Cramming more components onto integrated circuits. Proc IEEE. 1998;86:82–5.

    Article  Google Scholar 

  2. Calude CS, Costa JF, Dershowitz N, Freire E, Rozenberg G, editors. Unconventional computation. Lecture notes in computer science, vol. 5715. Berlin, Germany: Springer; 2009.

    Google Scholar 

  3. Mermin ND. Quantum computer science: an introduction. Cambridge, UK: Cambridge University Press; 2007.

    Book  Google Scholar 

  4. Katz E, editor. Biomolecular information processing - from logic systems to smart sensors and actuators. Weinheim, Germany: Wiley-VCH; 2012.

    Google Scholar 

  5. Katz E, editor. Molecular and supramolecular information processing—from molecular switches to unconventional computing. Weinheim, Germany: Willey-VCH; 2012.

    Google Scholar 

  6. Szacilowski K. Infochemistry. Chichester, UK: Wiley; 2012.

    Book  Google Scholar 

  7. de Silva AP. Molecular logic-based computation. Cambridge, UK: Royal Society of Chemistry; 2013.

    Google Scholar 

  8. de Silva AP. Molecular logic and computing. Nat Nanotechnol. 2007;2:399–410.

    Article  CAS  Google Scholar 

  9. Pischel U. Advanced molecular logic with memory function. Angew Chem Int Ed. 2010;49:1356–8.

    Article  CAS  Google Scholar 

  10. Szacilowski K. Digital information processing in molecular systems. Chem Rev. 2008;108:3481–548.

    Article  CAS  Google Scholar 

  11. Pischel U, Andreasson J, Gust D, Pais VF. Information processing with—Quo Vadis? ChemPhysChem. 2013;14:28–46.

    Article  CAS  Google Scholar 

  12. Benenson Y. Biomolecular computing systems: principles, progress and potential. Nat Rev Genet. 2012;13:455–68.

    Article  CAS  Google Scholar 

  13. Alon U. An introduction to systems biology: design principles of biological circuits. London, UK: Chapman and Hall/CRC Press; 2007.

    Google Scholar 

  14. Stojanovic MN, Stefanovic D, Rudchenko S. Exercises in molecular computing. Acc Chem Res. 2014;47:1845–52.

    Article  CAS  Google Scholar 

  15. Stojanovic MN, Stefanovic D. Chemistry at a higher level of abstraction. J Comput Theor Nanosci. 2011;8:434–40.

    Article  CAS  Google Scholar 

  16. Ezziane Z. DNA computing: applications and challenges. Nanotechnology. 2006;17:R27–39.

    Article  CAS  Google Scholar 

  17. Ashkenasy G, Dadon Z, Alesebi S, Wagner N, Ashkenasy N. Building logic into peptide networks: bottom-up and top-down. Israel J Chem. 2011;51:106–17.

    Article  CAS  Google Scholar 

  18. Unger R, Moult J. Towards computing with proteins. Proteins. 2006;63:53–64.

    Article  CAS  Google Scholar 

  19. Katz E, Privman V. Enzyme-based logic systems for information processing. Chem Soc Rev. 2010;39:1835–57.

    Article  CAS  Google Scholar 

  20. Katz E. Biocomputing—Tools, aims, perspectives. Curr Opin Biotechnol. 2015;34:202–8.

    Article  CAS  Google Scholar 

  21. Rinaudo K, Bleris L, Maddamsetti R, Subramanian S, Weiss R, Benenson Y. A universal RNAi-based logic evaluator that operates in mammalian cells. Nat Biotechnol. 2007;25:795–801.

    Article  CAS  Google Scholar 

  22. Arugula MA, Shroff N, Katz E, He Z. Molecular AND logic gate based on bacterial anaerobic respiration. Chem Commun. 2012;48:10174–6.

    Article  CAS  Google Scholar 

  23. Privman V, Katz E. Can bio-inspired information processing steps be realized as synthetic biochemical processes? Phys Status Solidi A. 2015;212:219–28.

    Article  CAS  Google Scholar 

  24. Kahan M, Gil B, Adar R, Shapiro E. Towards molecular computers that operate in a biological environment. Phys D. 2008;237:1165–72.

    Article  CAS  Google Scholar 

  25. Benenson Y. Biocomputers: from test tubes to live cells. Mol Biosyst. 2009;5:675–85.

    Article  CAS  Google Scholar 

  26. Adleman LM. Molecular computation of solutions to combinatorial problems. Science. 1994;266:1021–4.

    Article  CAS  Google Scholar 

  27. Katz E, Wang J, Privman M, Halámek J. Multi-analyte digital enzyme biosensors with built-in Boolean logic. Anal Chem. 2012;84:5463–9.

    Article  CAS  Google Scholar 

  28. Wang J, Katz E. Digital biosensors with built-in logic for biomedical applications. Israel J Chem. 2011;51:141–50.

    Article  CAS  Google Scholar 

  29. Wang J, Katz E. Digital biosensors with built-in logic for biomedical applications—Biosensors based on biocomputing concept. Anal Bioanal Chem. 2010;398:1591–603.

    Article  CAS  Google Scholar 

  30. Halámková L, Halámek J, Bocharova V, Wolf S, Mulier KE, Beilman G, et al. Analysis of biomarkers characteristic of porcine liver injury—from biomolecular logic gates to animal model. Analyst. 2012;137:1768–70.

    Article  CAS  Google Scholar 

  31. Zhou J, Halámek J, Bocharova V, Wang J, Katz E. Biologic analysis of injury biomarker patterns in human serum samples. Talanta. 2011;83:955–9.

    Article  CAS  Google Scholar 

  32. Halámek J, Windmiller JR, Zhou J, Chuang MC, Santhosh P, Strack G, et al. Multiplexing of injury codes for the parallel operation of enzyme logic gates. Analyst. 2010;135:2249–59.

    Article  CAS  Google Scholar 

  33. Manesh KM, Halámek J, Pita M, Zhou J, Tam TK, Santhosh P, et al. Enzyme logic gates for the digital analysis of physiological level upon injury. Biosens Bioelectron. 2009;24:3569–74.

    Article  CAS  Google Scholar 

  34. Yu X, Lian WJ, Zhang JN, Liu HY. Multi-input and -output logic circuits based on bioelectrocatalysis with horseradish peroxidase and glucose oxidase immobilized in multi responsive copolymer films on electrodes. Biosens Bioelectron. 2016;80:631–9.

    Article  CAS  Google Scholar 

  35. Gdor E, Shemesh S, Magdassi S, Mandler D. Multi-enzyme inkjet printed 2D arrays. ACS Appl Mater Interfaces. 2015;7:17985–92.

    Article  CAS  Google Scholar 

  36. Ayyub OB, Kofinas P. Enzyme induced stiffening of nanoparticle-hydrogel composites with structural color. ACS Nano. 2015;9:8004–11.

    Article  CAS  Google Scholar 

  37. Huang YY, Ran X, Lin YH, Ren JS, Qu XG. Enzyme-regulated the changes of pH values for assembling a colorimetric and multistage interconnection logic network with multiple readouts. Anal Chim Acta. 2015;870:92–8.

    Article  CAS  Google Scholar 

  38. Wang L, Lian WJ, Yao HQ, Liu HY. Multiple-stimuli responsive bioelectrocatalysis based on reduced graphene oxide/poly(N-isopropylacrylamide) composite films and its application in the fabrication of logic gates. ACS Appl Mater Interfaces. 2015;7:5168–76.

    Article  CAS  Google Scholar 

  39. Ma L, Diao AP. Design of enzyme-interfaced DNA logic operations (AND, OR, and INHIBIT) with an assaying application for single-base mismatch. Chem Commun. 2015;51:10233–5.

    Article  CAS  Google Scholar 

  40. Miyake T, Josberger EE, Keene S, Deng YX, Rolandi M, An enzyme logic bioprotonic transducer. APL Materials. 20153;Article Number: 014906.

  41. Liu S, Wang L, Lian WJ, Liu HY, Li CZ. Logic gate system with three outputs and three inputs based on switchable electrocatalysis of glucose by glucose oxidase entrapped in chitosan films. Chem – Asian J. 2015;10:225–30.

    Article  CAS  Google Scholar 

  42. Ikeda M, Tanida T, Yoshii T, Kurotani K, Onogi S, Urayama K, et al. Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel-enzyme hybrids. Nat Chem. 2014;6:511–8.

    Article  CAS  Google Scholar 

  43. Guo J, Zhuang JM, Wang F, Raghupathi KR, Thayumanavan S. Protein AND enzyme gated supramolecular disassembly. J Am Chem Soc. 2014;136:2220–3.

    Article  CAS  Google Scholar 

  44. Jia YM, Duan RX, Hong F, Wang BY, Liu NN, Xia F. Electrochemical biocomputing: a new class of molecular-electronic logic devices. Soft Matter. 2013;9:6571–7.

    Article  CAS  Google Scholar 

  45. Chen JH, Zeng LW. Enzyme-amplified electronic logic gates based on split/intact aptamers. Biosens Bioelectron. 2013;42:93–9.

    Article  CAS  Google Scholar 

  46. Liu WT, Wu LY, Yan SY, Huang R, Weng XC, Zhou X. Graphene oxide-based fluorescent detection of DNA and enzymes using Hoechst 33258 and its use for dual-output fluorescent logic gates. Anal Methods. 2013;5:3631–4.

    Article  CAS  Google Scholar 

  47. Radhakrishnan K, Tripathy J, Raichur AM. Dual enzyme responsive microcapsules simulating an "OR" logic gate for biologically triggered drug delivery applications. Chem Commun. 2013;49:5390–2.

    Article  CAS  Google Scholar 

  48. Domanskyi S, Privman V. Design of digital response in enzyme-based bioanalytical systems for information processing applications. J Phys Chem B. 2012;116:13690–5.

    Article  CAS  Google Scholar 

  49. Kim E, Liu Y, Bentley WE, Payne GF. Redox capacitor to establish bio-device redox-connectivity. Adv Funct Mater. 2012;22:1409–16.

    Article  CAS  Google Scholar 

  50. Zhou M, Wang J. Biofuel cells for self-powered electrochemical biosensing and logic biosensing. Electroanalysis. 2012;24:197–209.

    Article  CAS  Google Scholar 

  51. Rafael SP, Vallee-Belisle A, Fabregas E, Plaxco K, Palleschi G, Ricci F. Employing the metabolic "Branch Point Effect" to generate an all-or-none, digital-like response in enzymatic outputs and enzyme-based sensors. Anal Chem. 2012;84:1076–82.

    Article  CAS  Google Scholar 

  52. Tam TK. Switchable biocatalytic electrodes controlled by biomolecular computing systems. Int J Unconv Computing. 2012;8:367–81.

    Google Scholar 

  53. Pita M. Switchable biofuel cells controlled by biomolecular computing systems. Int J Unconv Comput. 2012;8:391–417.

    Google Scholar 

  54. Kim KW, Kim BC, Lee HJ, Kim J, Oh MK. Enzyme logic gates based on enzyme-coated carbon nanotubes. Electroanalysis. 2011;23:980–6.

    Article  CAS  Google Scholar 

  55. Zhou M, Wang FA, Dong SJ. Boolean logic gates based on oxygen-controlled biofuel cell in "one pot". Electrohim Acta. 2011;56:4112–8.

    Article  CAS  Google Scholar 

  56. Zhou M, Zheng XL, Wang J, Dong SJ. A self-powered and reusable biocomputing security keypad lock system based on biofuel cells. Chem – Eur J. 2010;16:7719–24.

    Article  CAS  Google Scholar 

  57. Richards E. Enzymes perform logic gate operations. J Mater Chem. 2006;16:C29.

    Google Scholar 

  58. Sivan S, Tuchman S, Lotan N. A biochemical logic gate using an enzyme and its inhibitor. Part II: The logic gate. Biosystems. 2003;70:21–33.

    Article  CAS  Google Scholar 

  59. Sivan S, Lotan N. A biochemical logic gate using an enzyme and its inhibitor. 1. The inhibitor as switching element. Biotech Prog. 1999;15:964–70.

    Article  CAS  Google Scholar 

  60. Arkin A, Ross J. Computational functions in biochemical reaction networks. Biophys J. 1994;67:560–78.

    Article  CAS  Google Scholar 

  61. Bakshi S, Zavalov O, Halámek J, Privman V, Katz E. Modularity of biochemical filtering for inducing sigmoid response in both inputs in an enzymatic AND gate. J Phys Chem B. 2013;117:9857–65.

    Article  CAS  Google Scholar 

  62. Privman V, Fratto BE, Zavalov O, Halámek J, Katz E. Enzymatic AND logic gate with sigmoid response induced by photochemically controlled oxidation of the output. J Phys Chem B. 2013;117:7559–68.

    Article  CAS  Google Scholar 

  63. Halámek J, Zavalov O, Halámková L, Korkmaz S, Privman V, Katz E. Enzyme-based logic analysis of biomarkers at physiological concentrations: AND gate with double-sigmoid “filter” response. J Phys Chem B. 2012;116:4457–64.

    Article  CAS  Google Scholar 

  64. Strack G, Pita M, Ornatska M, Katz E. Boolean logic gates using enzymes as input signals. ChemBioChem. 2008;9:1260–6.

    Article  CAS  Google Scholar 

  65. Baron R, Lioubashevski O, Katz E, Niazov T, Willner I. Logic gates and elementary computing by enzymes. J Phys Chem A. 2006;110:8548–53.

    Article  CAS  Google Scholar 

  66. Zavalov O, Bocharova V, Privman V, Katz E. Enzyme-based logic: OR gate with double-sigmoid filter response. J Phys Chem B. 2012;116:9683–9.

    Article  CAS  Google Scholar 

  67. Zhou J, Arugula MA, Halámek J, Pita M, Katz E. Enzyme-based NAND and NOR logic gates with modular design. J Phys Chem B. 2009;113:16065–70.

    Article  CAS  Google Scholar 

  68. Moseley F, Halámek J, Kramer F, Poghossian A, Schöning MJ, Katz E. Enzyme-based reversible CNOT logic gate realized in a flow system. Analyst. 2014;139:1839–42.

    Article  CAS  Google Scholar 

  69. Halámek J, Bocharova V, Arugula MA, Strack G, Privman V, Katz E. Realization and properties of biochemical-computing biocatalytic XOR gate based on enzyme inhibition by a substrate. J Phys Chem B. 2011;115:9838–45.

    Article  CAS  Google Scholar 

  70. Privman V, Zhou J, Halámek J, Katz E. Realization and properties of biochemical-computing biocatalytic XOR gate based on signal change. J Phys Chem B. 2010;114:13601–8.

    Article  CAS  Google Scholar 

  71. Privman V, Zavalov O, Halámková L, Moseley F, Halámek J, Katz E. Networked enzymatic logic gates with filtering: new theoretical modeling expressions and their experimental application. J Phys Chem B. 2013;117:14928–39.

    Article  CAS  Google Scholar 

  72. Strack G, Ornatska M, Pita M, Katz E. Biocomputing security system: Concatenated enzyme-based logic gates operating as a biomolecular keypad lock. J Am Chem Soc. 2008;130:4234–5.

    Article  CAS  Google Scholar 

  73. Niazov T, Baron R, Katz E, Lioubashevski O, Willner I. Concatenated logic gates using four coupled biocatalysts operating in series. Proc Natl Acad Sci U S A. 2006;103:17160–3.

    Article  CAS  Google Scholar 

  74. Privman V, Strack G, Solenov D, Pita M, Katz E. Optimization of enzymatic biochemical logic for noise reduction and scalability: How many biocomputing gates can be interconnected in a circuit? J Phys Chem B. 2008;112:11777–84.

    Article  CAS  Google Scholar 

  75. Mailloux S, Gerasimova YV, Guz N, Kolpashchikov DM, Katz E. Bridging the two worlds: a universal interface between enzymatic and DNA computing systems. Angew Chem Int Ed. 2015;54:6562–6.

    Article  CAS  Google Scholar 

  76. Jin Z, Güven G, Bocharova V, Halámek J, Tokarev I, Minko S, et al. Electrochemically controlled drug-mimicking protein release from iron-alginate thin-films associated with an electrode. ACS Appl Mater Interfaces. 2012;4:466–75.

    Article  CAS  Google Scholar 

  77. Guz N, Fedotova TA, Fratto BE, Schlesinger O, Alfonta L, Kolpashchikov D, et al. Bioelectronic interface connecting reversible logic gates based on enzyme and DNA reactions. ChemPhysChem. 2016;17:2247–55.

    Article  CAS  Google Scholar 

  78. Melnikov D, Strack G, Pita M, Privman V, Katz E. Analog noise reduction in enzymatic logic gates. J Phys Chem B. 2009;113:10472–9.

    Article  CAS  Google Scholar 

  79. Privman V, Domanskyi S, Mailloux S, Holade Y, Katz E. Kinetic model for a threshold filter in an enzymatic system for bioanalytical and biocomputing applications. J Phys Chem B. 2014;118:12435–43.

    Article  CAS  Google Scholar 

  80. Pita M, Privman V, Arugula MA, Melnikov D, Bocharova V, Katz E. Towards biochemical filter with sigmoidal response to pH changes: buffered biocatalytic signal transduction. Phys Chem Chem Phys. 2011;13:4507–13.

    Article  CAS  Google Scholar 

  81. Privman V, Halámek J, Arugula MA, Melnikov D, Bocharova V, Katz E. Biochemical filter with sigmoidal response: Increasing the complexity of biomolecular logic. J Phys Chem B. 2010;114:14103–9.

    Article  CAS  Google Scholar 

  82. Katz E, Halámek J, New approach in forensic analysis – Biomolecular computing based analysis of significant forensic biomarkers. Ann Forensic Res Anal. 2014; 1: Article Number 1002.

  83. Bakshi S, Halámková L, Halámek J, Katz E. Biocatalytic analysis of biomarkers for forensic identification of gender. Analyst. 2014;139:559–63.

    Article  CAS  Google Scholar 

  84. Kramer F, Halámková L, Poghossian A, Schöning MJ, Katz E, Halámek J. Biocatalytic analysis of biomarkers for forensic identification of ethnicity between Caucasian and African American groups. Analyst. 2013;138:6251–7.

    Article  CAS  Google Scholar 

  85. Bocharova V, Halámek J, Zhou J, Strack G, Wang J, Katz E. Alert-type biological dosimeter based on enzyme logic system. Talanta. 2011;85:800–3.

    Article  CAS  Google Scholar 

  86. Mailloux S, Zavalov O, Guz N, Katz E, Bocharova V. Enzymatic filter for improved separation of output signals in enzyme logic systems towards ‘Sense and Treat’ medicine. Biomaterials Sci. 2014;2:184–91.

    Article  CAS  Google Scholar 

  87. Halámek J, Zhou J, Halámková L, Bocharova V, Privman V, Wang J, et al. Biomolecular filters for improved separation of output signals in enzyme logic systems applied to biomedical analysis. Anal Chem. 2011;83:8383–6.

    Article  CAS  Google Scholar 

  88. Guz N, Halámek J, Rusling JF, Katz E. A biocatalytic cascade with several output signals—towards biosensors with different levels of confidence. Anal Bioanal Chem. 2014;406:3365–70.

    Article  CAS  Google Scholar 

  89. Privman M, Tam TK, Pita M, Katz E. Switchable electrode controlled by enzyme logic network system: approaching physiologically regulated bioelectronics. J Am Chem Soc. 2009;131:1314–21.

    Article  CAS  Google Scholar 

  90. Tam TK, Ornatska M, Pita M, Minko S, Katz E. Polymer brush-modified electrode with switchable and tunable redox activity for bioelectronic applications. J Phys Chem C. 2008;112:8438–45.

    Article  CAS  Google Scholar 

  91. Tokarev I, Gopishetty V, Zhou J, Pita M, Motornov M, Katz E, et al. Stimuli-responsive hydrogel membranes coupled with biocatalytic processes. ACS Appl Mater Interfaces. 2009;1:532–6.

    Article  CAS  Google Scholar 

  92. Poghossian A, Katz E, Schöning MJ. Enzyme logic AND-Reset and OR-Reset gates based on a field-effect electronic transducer modified with multi-enzyme membrane. Chem Commun. 2015;51:6564–7.

    Article  CAS  Google Scholar 

  93. Poghossian A, Malzahn K, Abouzar MH, Mehndiratta P, Katz E, Schöning MJ. Integration of biomolecular logic gates with field-effect transducers. Electrochim Acta. 2011;56:9661–5.

    Article  CAS  Google Scholar 

  94. Poghossian A, Krämer M, Abouzar MH, Pita M, Katz E, Schöning MJ. Interfacing of biocomputing systems with silicon chips: enzyme logic gates based on field-effect devices. Procedia Chem. 2009;1:682–5.

    Article  CAS  Google Scholar 

  95. Krämer M, Pita M, Zhou J, Ornatska M, Poghossian A, Schöning MJ, et al. Coupling of biocomputing systems with electronic chips: electronic interface for transduction of biochemical information. J Phys Chem C. 2009;113:2573–9.

    Article  CAS  Google Scholar 

  96. Molinnus D, Sorich M, Bartz A, Siegert P, Willenberg HS, Lisdat F, et al. Towards an adrenaline biosensor based on substrate recycling amplification in combination with an enzyme logic gate. Sens Actuat B. 2016;237:190–5.

    Article  CAS  Google Scholar 

  97. Molinnus D, Bäcker M, Iken H, Poghossian A, Keusgen M, Schöning MJ. Concept for a biomolecular logic chip with an integrated sensor and actuator function. Phys Status Solidi A. 2015;212:1382–8.

    Article  CAS  Google Scholar 

  98. Tam TK, Pita M, Trotsenko O, Motornov M, Tokarev I, Halámek J, et al. Reversible “closing” of an electrode interface functionalized with a polymer brush by an electrochemical signal. Langmuir. 2010;26:4506–13.

    Article  CAS  Google Scholar 

  99. Motornov M, Sheparovych R, Katz E, Minko S. Chemical gating with nanostructured responsive polymer brushes: mixed brush versus homopolymer brush. ACS Nano. 2008;2:41–52.

    Article  CAS  Google Scholar 

  100. Poghossian AS. The super-Nernstian pH sensitivity of Ta2O5-gate ISFETs. Sens Actuat B. 1992;7:367–70.

    Article  Google Scholar 

  101. Siqueira JR, Abouzar MH, Bäcker M, Zucolotto V, Poghossian A, Oliveira ON, et al. Carbon nanotubes in nanostructured films: potential application as amperometric and potentiometric field-effect (bio-)chemical sensors. Phys Status Solidi A. 2009;206:462–7.

    Article  CAS  Google Scholar 

  102. Abouzar MH, Poghossian A, Cherstvy AG, Pedraza AM, Ingebrandt S, Schöning MJ. Label-free electrical detection of DNA by means of field-effect nanoplate capacitors: experiments and modeling. Phys Status Solidi A. 2012;209:925–34.

    Article  CAS  Google Scholar 

  103. Poghossian A, Weil M, Cherstvy AG, Schöning MJ. Electrical monitoring of polyelectrolyte multilayer formation by means of capacitive field-effect devices. Anal Bioanal Chem. 2013;405:6425–36.

    Article  CAS  Google Scholar 

  104. Poghossian A, Bäcker M, Mayer D, Schöning MJ. Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids. Nanoscale. 2015;7:1023–31.

    Article  CAS  Google Scholar 

  105. Albery WJ, O'Shea GJ, Smith AL. J Chem Soc Faraday Trans. 1996;92:4083–5.

    Article  CAS  Google Scholar 

  106. Lasia, A. Semiconductors and Mott-Schottky plots. In: Electrochemical impedance spectroscopy and its applications, Springer: New York;2014. Chap10, pp. 251–255.

  107. Agliari E, Altavilla M, Barra A, Dello Schiavo L, Katz E. Notes on stochastic (bio)-logic gates: computing with allosteric cooperativity. Sci Rep. 2015; 5: Article Number 9415.

  108. Mailloux S, Guz N, Zakharchenko A, Minko S, Katz E. Majority and minority gates realized in enzyme-biocatalyzed systems integrated with logic networks and interfaced with bioelectronic systems. J Phys Chem B. 2014;118:6775–84.

    Article  CAS  Google Scholar 

  109. Baron R, Lioubashevski O, Katz E, Niazov T, Willner I. Elementary arithmetic operations by enzymes: a model for metabolic pathway based computing. Angew Chem Int Ed. 2006;45:1572–6.

    Article  CAS  Google Scholar 

  110. Fratto BE, Lewer JM, Katz E. An enzyme-based half-adder and half-subtractor with a modular design. ChemPhysChem. 2016;17:2210–7.

    Article  CAS  Google Scholar 

  111. Fratto BE, Katz E. Reversible logic gates based on enzyme-biocatalyzed reactions and realized in flow cells—modular approach. ChemPhysChem. 2015;16:1405–15.

    Article  CAS  Google Scholar 

  112. Fratto BE, Katz E. Controlled logic gates—Switch gate and Fredkin gate based on enzyme-biocatalyzed reactions realized in flow cells. ChemPhysChem. 2016;17:1046–53.

    Article  CAS  Google Scholar 

  113. Craighead H. Future lab-on-a-chip technologies for interrogating individual molecules. Nature. 2006;442:387–93.

    Article  CAS  Google Scholar 

  114. Mailloux S, Katz E. The role of biomolecular logic systems in biosensors and bioactuators. Optical Eng. 2014; 53: Article Number 097107.

  115. Zhou M, Zhou N, Kuralay F, Windmiller JR, Parkhomovsky S, Valdés-Ramírez G, et al. A self-powered “Sense-Act-Treat” system that is based on a biofuel cell and controlled by Boolean logic. Angew Chem Int Ed. 2012;51:2686–9.

    Article  CAS  Google Scholar 

  116. Pita M, Minko S, Katz E. Enzyme-based logic systems and their applications for novel multi-signal-responsive materials. J Mater Sci: Mater Med. 2009;20:457–62.

    CAS  Google Scholar 

  117. Katz E, Pingarrón JM, Mailloux S, Guz N, Gamella M, Melman G, et al. Substance release triggered by biomolecular signals in bioelectronic systems. J Phys Chem Lett. 2015;6:1340–7.

    Article  CAS  Google Scholar 

  118. Katz E, Bocharova V, Privman M. Electronic interfaces switchable by logically processed multiple biochemical and physiological signals. J Mater Chem. 2012;22:8171–8.

    Article  CAS  Google Scholar 

  119. Pita M, Katz E. Switchable electrodes: How can the system complexity be scaled up? Electroanalysis. 2009;21:252–60.

    Article  CAS  Google Scholar 

  120. Bocharova V, Katz E. Switchable electrode interfaces controlled by physical, chemical, and biological signals. Chem Rec. 2012;12:114–30.

    Article  CAS  Google Scholar 

  121. Katz E, Pita M. Biofuel cells controlled by logically processed biochemical signals: towards physiologically regulated bioelectronic devices. Chem Eur J. 2009;15:12554–64.

    Article  CAS  Google Scholar 

  122. Shapiro E. A mechanical Turing machine: blueprint for a biomolecular computer. Interface Focus. 2012;2:497–503.

    Article  Google Scholar 

  123. de Murieta IS, Miro-Bueno JM, Rodriguez-Paton A. Biomolecular computers. Curr Bioinformatics. 2011;6:173–84.

    Article  Google Scholar 

  124. Haller LA, Fels G. Chemistry and computer—biomolecular coupling. Nachrichten aus der Chemie. 2008;56:771–2.

    Article  Google Scholar 

  125. Yin YM, Lin XQ. Progress on molecular computer. Prog Chem. 2001;13:337–42.

    CAS  Google Scholar 

  126. Rambidi NG. Biomolecular computer: roots and promises. Biosystems. 1997;44:1–15.

    Article  CAS  Google Scholar 

  127. Rambidi NG, Maximychev AV. Towards a biomolecular computer. Information processing capabilities of biomolecular nonlinear dynamic media. Biosystems. 1997;41:195–211.

    Article  CAS  Google Scholar 

  128. Dirk SM, Price DW, Chanteau S, Kosynkin DV, Tour JM. Accoutrements of a molecular computer: switches, memory components, and alligator clips. Tetrahedron. 2001;57:5109–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research at Clarkson University (E.K.) was supported by the USA National Science Foundation, NSF (Awards CBET-1403208).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Evgeny Katz, Arshak Poghossian or Michael J. Schöning.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katz, E., Poghossian, A. & Schöning, M.J. Enzyme-based logic gates and circuits—analytical applications and interfacing with electronics. Anal Bioanal Chem 409, 81–94 (2017). https://doi.org/10.1007/s00216-016-0079-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0079-7

Keywords

Navigation