Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 10, pp 2383–2406 | Cite as

Oligonucleotide-based biosensors for in vitro diagnostics and environmental hazard detection

  • Il Young Jung
  • Eun Hee Lee
  • Ah Young Suh
  • Seung Jin Lee
  • Hyukjin LeeEmail author
Review
Part of the following topical collections:
  1. ABC Highlights: authored by Rising Stars and Top Experts

Abstract

Oligonucleotide-based biosensors have drawn much attention because of their broad applications in in vitro diagnostics and environmental hazard detection. They are particularly of interest to many researchers because of their high specificity as well as excellent sensitivity. Recently, oligonucleotide-based biosensors have been used to achieve not only genetic detection of targets but also the detection of small molecules, peptides, and proteins. This has further broadened the applications of these sensors in the medical and health care industry. In this review, we highlight various examples of oligonucleotide-based biosensors for the detection of diseases, drugs, and environmentally hazardous chemicals. Each example is provided with detailed schematics of the detection mechanism in addition to the supporting experimental results. Furthermore, future perspectives and new challenges in oligonucleotide-based biosensors are discussed.

Keywords

Biosensors Oligonucelotide In vitro diagnosis Environmental harzard detection 

Abbreviations

Amyloid β

ACNG

Aptamer-coated nanogold

AD

Alzheimer’s disease

ADDL

Amyloid β derived diffusible ligand

AuNP

Gold nanoparticle

Au@PtNP

Nanoparticle consisting of a gold core and a platinum shell

BPA

Bisphenol A

cDNA

Complementary DNA

CEA

Carcinoembryonic antigen

CSF

Cerebrospinal fluid

EDC

Endocrine-disrupting compound

FRET

Fluorescence resonance energy transfer

G4

G-quadruplex

HBV

Hepatitis B virus

HRCA

Hyperbranched rolling circle amplification

HRP

Horseradish peroxidase

LSPR

Localized surface plasmon resonance

MB-AuNPs

Gold nanoparticles with magnetic microbeads inside

mHCR

Multibranched hybridization chain reaction

MWCNT

Multiwalled carbon nanotube

NPG

Nanoporous gold

OTA

Ochratoxin A

PCR

Polymerase chain reaction

PDGF

Platelet-derived growth factor

PrPc

Cellular prion protein

QCM

Quartz crystal microbalance

QD

Quantum dot

RCA

Rolling circle amplification

RT-PCR

Reverse transcription polymerase chain reaction

SELEX

Systemic evolution of ligands by exponential enrichment

SERRS

Surface-enhanced resonance Raman scattering

ssDNA

Single-stranded DNA

TAMRA

Tetramethylrhodamine

THMS

Triple-helix molecular switch

Notes

Acknowledgments

I.Y.J. and E.H.L and A.Y.S. contributed equally to this work. This work was supported by the Basic Science Research Program (2012R1A1A1A05027352), The National Research Foundation of South Korea: BioMedical Technology Development Program (2015M3A9D7031026), and the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (NRF-2013K2A2A6000467)

Compliance with ethical standard

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Blum LJ, Coulet PR (eds) (1991) Biosensor principles and applications. Bioprocess technology, vol 15. Dekker, New YorkGoogle Scholar
  2. 2.
    Hasan A, Nurunnabi M, Morshed M, Paul A, Polini A, Kuila T, Al Hariri M, Lee YK, Jaffa AA (2014) Recent advances in application of biosensors in tissue engineering. BioMed Res Int 2014:307519. doi: 10.1155/2014/307519 Google Scholar
  3. 3.
    Maruthappu M, Williams C (2013) The biomarket. Glob Public Health 8(1):106–119. doi: 10.1080/17441692.2012.758300 CrossRefGoogle Scholar
  4. 4.
    Huang H, Zhu JJ (2009) DNA aptamer-based QDs electrochemiluminescence biosensor for the detection of thrombin. Biosens Bioelectron 25(4):927–930. doi: 10.1016/j.bios.2009.08.008 CrossRefGoogle Scholar
  5. 5.
    Khan A, Khan AA, Asiri AM, Rub MA, Azum N, Rahman MM, Khan SB, Ghani SA (2013) A new trend on biosensor for neurotransmitter choline/acetylcholine—an overview. Appl Biochem Biotechnol 169(6):1927–1939. doi: 10.1007/s12010-013-0099-0 CrossRefGoogle Scholar
  6. 6.
    Alix-Panabieres C, Pantel K (2013) Circulating tumor cells: liquid biopsy of cancer. Clin Chem 59(1):110–118. doi: 10.1373/clinchem.2012.194258 CrossRefGoogle Scholar
  7. 7.
    Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, Ryan P, Balis UJ, Tompkins RG, Haber DA, Toner M (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239. doi: 10.1038/nature06385 CrossRefGoogle Scholar
  8. 8.
    Yoon HJ, Kim TH, Zhang Z, Azizi E, Pham TM, Paoletti C, Lin J, Ramnath N, Wicha MS, Hayes DF, Simeone DM, Nagrath S (2013) Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat Nanotechnol 8(10):735–741. doi: 10.1038/nnano.2013.194 CrossRefGoogle Scholar
  9. 9.
    Williams SC (2013) Circulating tumor cells. Proc Natl Acad Sci U S A 110(13):4861. doi: 10.1073/pnas.1304186110 CrossRefGoogle Scholar
  10. 10.
    Plaks V, Koopman CD, Werb Z (2013) Cancer. Circulating tumor cells. Science 341(6151):1186–1188. doi: 10.1126/science.1235226 CrossRefGoogle Scholar
  11. 11.
    Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM, Concannon KF, Donaldson MC, Sequist LV, Brachtel E, Sgroi D, Baselga J, Ramaswamy S, Toner M, Haber DA, Maheswaran S (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339(6119):580–584. doi: 10.1126/science.1228522 CrossRefGoogle Scholar
  12. 12.
    Wen CY, Wu LL, Zhang ZL, Liu YL, Wei SZ, Hu J, Tang M, Sun EZ, Gong YP, Yu J, Pang DW (2014) Quick-response magnetic nanospheres for rapid, efficient capture and sensitive detection of circulating tumor cells. ACS Nano 8(1):941–949. doi: 10.1021/nn405744f CrossRefGoogle Scholar
  13. 13.
    Jiang X, Jiang Z, Xu T, Su S, Zhong Y, Peng F, Su Y, He Y (2013) Surface-enhanced Raman scattering-based sensing in vitro: facile and label-free detection of apoptotic cells at the single-cell level. Anal Chem 85(5):2809–2816CrossRefGoogle Scholar
  14. 14.
    Liu H, Xu S, He Z, Deng A, Zhu JJ (2013) Supersandwich cytosensor for selective and ultrasensitive detection of cancer cells using aptamer-DNA concatamer-quantum dots probes. Anal Chem 85(6):3385–3392. doi: 10.1021/ac303789x CrossRefGoogle Scholar
  15. 15.
    Medley CD, Bamrungsap S, Tan W, Smith JE (2011) Aptamer-conjugated nanoparticles for cancer cell detection. Anal Chem 83(3):727–734. doi: 10.1021/ac102263v CrossRefGoogle Scholar
  16. 16.
    Park JM, Lee JY, Lee JG, Jeong H, Oh JM, Kim YJ, Park D, Kim MS, Lee HJ, Oh JH, Lee SS, Lee WY, Huh N (2012) Highly efficient assay of circulating tumor cells by selective sedimentation with a density gradient medium and microfiltration from whole blood. Anal Chem 84(17):7400–7407. doi: 10.1021/ac3011704 CrossRefGoogle Scholar
  17. 17.
    Wu Y, Xue P, Kang Y, Hui KM (2013) Highly specific and ultrasensitive graphene-enhanced electrochemical detection of low-abundance tumor cells using silica nanoparticles coated with antibody-conjugated quantum dots. Anal Chem 85(6):3166–3173. doi: 10.1021/ac303398b CrossRefGoogle Scholar
  18. 18.
    Xu Y, Phillips JA, Yan J, Li Q, Fan ZH, Tan W (2009) Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Anal Chem 81(17):7436–7442. doi: 10.1021/ac9012072 CrossRefGoogle Scholar
  19. 19.
    Yang X, Li J, Pei H, Zhao Y, Zuo X, Fan C, Huang Q (2014) DNA-gold nanoparticle conjugates-based nanoplasmonic probe for specific differentiation of cell types. Anal Chem 86(6):3227–3231. doi: 10.1021/ac500381e CrossRefGoogle Scholar
  20. 20.
    Yin J, He X, Wang K, Xu F, Shangguan J, He D, Shi H (2013) Label-free and turn-on aptamer strategy for cancer cells detection based on a DNA-silver nanocluster fluorescence upon recognition-induced hybridization. Anal Chem 85(24):12011–12019. doi: 10.1021/ac402989u CrossRefGoogle Scholar
  21. 21.
    Zheng T, Fu JJ, Hu L, Qiu F, Hu M, Zhu JJ, Hua ZC, Wang H (2013) Nanoarchitectured electrochemical cytosensors for selective detection of leukemia cells and quantitative evaluation of death receptor expression on cell surfaces. Anal Chem 85(11):5609–5616. doi: 10.1021/ac400994p CrossRefGoogle Scholar
  22. 22.
    Maltez-da Costa M, de la Escosura-Muniz A, Nogues C, Barrios L, Ibanez E, Merkoci A (2012) Simple monitoring of cancer cells using nanoparticles. Nano Lett 12(8):4164–4171. doi: 10.1021/nl301726g CrossRefGoogle Scholar
  23. 23.
    Wu Y, Sefah K, Liu H, Wang R, Tan W (2010) DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells. Proc Natl Acad Sci U S A 107(1):5–10. doi: 10.1073/pnas.0909611107 CrossRefGoogle Scholar
  24. 24.
    Zhou G, Lin M, Song P, Chen X, Chao J, Wang L, Huang Q, Huang W, Fan C, Zuo X (2014) Multivalent capture and detection of cancer cells with DNA nanostructured biosensors and multibranched hybridization chain reaction amplification. Anal Chem 86(15):7843–7848. doi: 10.1021/ac502276w CrossRefGoogle Scholar
  25. 25.
    Xu JZ, Zhu JJ, Wu Q, Hu Z, Chen HY (2003) An amperometric biosensor based on the coimmobilization of horseradish peroxidase and methylene blue on a carbon nanotubes modified electrode. Electroanalysis 15(3):219–224CrossRefGoogle Scholar
  26. 26.
    Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65(3):249–259CrossRefGoogle Scholar
  27. 27.
    Soleymani L, Fang Z, Sargent EH, Kelley SO (2009) Programming the detection limits of biosensors through controlled nanostructuring. Nat Nanotechnol 4(12):844–848. doi: 10.1038/nnano.2009.276 CrossRefGoogle Scholar
  28. 28.
    Li D, Song S, Fan C (2010) Target-responsive structural switching for nucleic acid-based sensors. Acc Chem Res 43(5):631–641. doi: 10.1021/ar900245u CrossRefGoogle Scholar
  29. 29.
    Tang Y, Ge B, Sen D, Yu HZ (2014) Functional DNA switches: rational design and electrochemical signaling. Chem Soc Rev 43(2):518–529. doi: 10.1039/c3cs60264h CrossRefGoogle Scholar
  30. 30.
    Grunnet M, Sorensen JB (2012) Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer 76(2):138–143. doi: 10.1016/j.lungcan.2011.11.012 CrossRefGoogle Scholar
  31. 31.
    Duffy MJ (2001) Carcinoembryonic antigen as a marker for colorectal cancer: is it clinically useful? Clin Chem 47(4):624–630Google Scholar
  32. 32.
    Bohunicky B, Mousa SA (2011) Biosensors: the new wave in cancer diagnosis. Nanotechnol Sci Appl 4:1–10Google Scholar
  33. 33.
    Beveridge RA, Chan DW, Bruzek D, Damron D, Bray KR, Gaur PK, Ettinger DS, Rock RC, Shurbaji MS, Kuhajda FP (1988) A new biomarker in monitoring breast cancer: CA 549. J Clin Oncol 6(12):1815–1821Google Scholar
  34. 34.
    Liang K, Zhai S, Zhang Z, Fu X, Shao J, Lin Z, Qiu B, Chen G (2014) Ultrasensitive colorimetric carcinoembryonic antigen biosensor based on hyperbranched rolling circle amplification. Analyst 139(17):4330–4334CrossRefGoogle Scholar
  35. 35.
    Wu Z-S, Zhou H, Zhang S, Shen G, Yu R (2010) Electrochemical aptameric recognition system for a sensitive protein assay based on specific target binding-induced rolling circle amplification. Anal Chem 82(6):2282–2289CrossRefGoogle Scholar
  36. 36.
    Xiao SJ, Hu PP, Li YF, Huang CZ, Huang T, Xiao GF (2009) Aptamer-mediated turn-on fluorescence assay for prion protein based on guanine quenched fluophor. Talanta 79(5):1283–1286CrossRefGoogle Scholar
  37. 37.
    Zhang DY, Zhang W, Li X, Konomi Y (2001) Detection of rare DNA targets by isothermal ramification amplification. Gene 274(1):209–216CrossRefGoogle Scholar
  38. 38.
    Cheng Y, Zhang X, Li Z, Jiao X, Wang Y, Zhang Y (2009) Highly sensitive determination of microRNA using target‐primed and branched rolling‐circle amplification. Angew Chem 121(18):3318–3322CrossRefGoogle Scholar
  39. 39.
    Aguzzi A, Calella AM (2009) Prions: protein aggregation and infectious diseases. Physiol Rev 89(4):1105–1152CrossRefGoogle Scholar
  40. 40.
    Kocisko DA, Come JH, Priola SA, Chesebro B, Raymond GJ, Lansbury PT, Caughey B (1994) Cell-free formation of protease-resistant prion protein. Nature 370(6489):471–474. doi: 10.1038/370471a0 CrossRefGoogle Scholar
  41. 41.
    Xiao S, Ou-Yang Y, Zhang X, Li X, Yang S, Chen H (2012) Aptamer-based assay for prion diseases diagnostic. Procedia Environ Sci 12:1348–1353CrossRefGoogle Scholar
  42. 42.
    Gilch S, Schätzl HM (2009) Aptamers against prion proteins and prions. Cell Mol Life Sci 66(15):2445–2455CrossRefGoogle Scholar
  43. 43.
    Sekiya S, Noda K, Nishikawa F, Yokoyama T, Kumar PK, Nishikawa S (2006) Characterization and application of a novel RNA aptamer against the mouse prion protein. J Biochem 139(3):383–390CrossRefGoogle Scholar
  44. 44.
    Sekiya S, Nishikawa F, Noda K, Kumar P, Yokoyama T, Nishikawa S (2005) In vitro selection of RNA aptamers against cellular and abnormal isoform of mouse prion protein. Nucleic Acids Symp Ser 49(1):361–362Google Scholar
  45. 45.
    Gilch S, Kehler C, Schätzl HM (2007) Peptide aptamers expressed in the secretory pathway interfere with cellular PrPSc formation. J Mol Biol 371(2):362–373CrossRefGoogle Scholar
  46. 46.
    Safar JG, Kellings K, Serban A, Groth D, Cleaver JE, Prusiner SB, Riesner D (2005) Search for a prion-specific nucleic acid. J Virol 79(16):10796–10806CrossRefGoogle Scholar
  47. 47.
    Querfurth HW, LaFerla FM (2010) Alzheimer's disease. N Engl J Med 362(4):329–344. doi: 10.1056/NEJMra0909142 CrossRefGoogle Scholar
  48. 48.
    Blennow K (2004) Cerebrospinal fluid protein biomarkers for Alzheimer's disease. NeuroRx 1(2):213–225CrossRefGoogle Scholar
  49. 49.
    Clark CM, Xie S, Chittams J, Ewbank D, Peskind E, Galasko D, Morris JC, McKeel DW, Farlow M, Weitlauf SL (2003) Cerebrospinal fluid tau and β-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch Neurol 60(12):1696–1702CrossRefGoogle Scholar
  50. 50.
    Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer's disease. Lancet Neurol 2(10):605–613CrossRefGoogle Scholar
  51. 51.
    Teunissen C, De Vente J, Steinbusch H, De Bruijn C (2002) Biochemical markers related to Alzheimer’s dementia in serum and cerebrospinal fluid. Neurobiol Aging 23(4):485–508CrossRefGoogle Scholar
  52. 52.
    Georganopoulou DG, Chang L, Nam J-M, Thaxton CS, Mufson EJ, Klein WL, Mirkin CA (2005) Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci U S A 102(7):2273–2276CrossRefGoogle Scholar
  53. 53.
    Keating CD (2005) Nanoscience enables ultrasensitive detection of Alzheimer's biomarker. Proc Natl Acad Sci U S A 102(7):2263–2264CrossRefGoogle Scholar
  54. 54.
    Brambilla D, Le Droumaguet B, Nicolas J, Hashemi SH, Wu L-P, Moghimi SM, Couvreur P, Andrieux K (2011) Nanotechnologies for Alzheimer's disease: diagnosis, therapy, and safety issues. Nanomedicine 7(5):521–540Google Scholar
  55. 55.
    Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP (2006) The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 45(4):529–538CrossRefGoogle Scholar
  56. 56.
    Shepard CW, Simard EP, Finelli L, Fiore AE, Bell BP (2006) Hepatitis B virus infection: epidemiology and vaccination. Epidemiol Rev 28(1):112–125CrossRefGoogle Scholar
  57. 57.
    Young K-C, Chang T-T, Hsiao W-C, Cheng P-N, Chen S-H, Jen C-M (2002) A reverse-transcription competitive PCR assay based on chemiluminescence hybridization for detection and quantification of hepatitis C virus RNA. J Virol Methods 103(1):27–39CrossRefGoogle Scholar
  58. 58.
    Fagan EA, Guarner P, Perera SD, Trowbridge R, Rolando N, Davison F, Williams R (1985) Quantitation of hepatitis B virus DNA (HBV DNA) in serum using the spot hybridization technique and scintillation counting. J Virol Methods 12(3):251–262CrossRefGoogle Scholar
  59. 59.
    Almeida RP, Cardoso DD (2006) Detection of HBV DNA by nested-PCR in a HBsAg and anti-HBc negative blood bank donor. J Clin Virol 36(3):231–234CrossRefGoogle Scholar
  60. 60.
    Vincenti D, Solmone M, Garbuglia AR, Iacomi F, Capobianchi MR (2009) A sensitive direct sequencing assay based on nested PCR for the detection of HBV polymerase and surface glycoprotein mutations. J Virol Methods 159(1):53–57CrossRefGoogle Scholar
  61. 61.
    Mei SD, Yatsuhashi H, del Carmen PM, Hamada R, Fujino T, Matsumoto T, Inoue O, Koga M, Yano M (2000) Detection of HBV RNA in peripheral blood mononuclear cells in patients with and without HBsAg by reverse transcription polymerase chain reaction. Hepatol Res 18(1):19–28CrossRefGoogle Scholar
  62. 62.
    Cha BH, Lee S-M, Park JC, Hwang KS, Kim SK, Lee Y-S, Ju B-K, Kim TS (2009) Detection of hepatitis B virus (HBV) DNA at femtomolar concentrations using a silica nanoparticle-enhanced microcantilever sensor. Biosens Bioelectron 25(1):130–135CrossRefGoogle Scholar
  63. 63.
    Hassen WM, Chaix C, Abdelghani A, Bessueille F, Leonard D, Jaffrezic-Renault N (2008) An impedimetric DNA sensor based on functionalized magnetic nanoparticles for HIV and HBV detection. Sens Actuators B 134(2):755–760CrossRefGoogle Scholar
  64. 64.
    Chang C-C, Chen C-C, Wei S-C, Lu H-H, Liang Y-H, Lin C-W (2012) Diagnostic devices for isothermal nucleic acid amplification. Sensors 12(6):8319–8337CrossRefGoogle Scholar
  65. 65.
    Yao C, Xiang Y, Deng K, Xia H, Fu W (2013) Sensitive and specific HBV genomic DNA detection using RCA-based QCM biosensor. Sens Actuators B 181:382–387CrossRefGoogle Scholar
  66. 66.
    Niemz A, Ferguson TM, Boyle DS (2011) Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol 29(5):240–250. doi: 10.1016/j.tibtech.2011.01.007 CrossRefGoogle Scholar
  67. 67.
    Zhang DY, Brandwein M, Hsuih TC, Li H (1998) Amplification of target-specific, ligation-dependent circular probe. Gene 211(2):277–285CrossRefGoogle Scholar
  68. 68.
    Hatch A, Sano T, Misasi J, Smith CL (1999) Rolling circle amplification of DNA immobilized on solid surfaces and its application to multiplex mutation detection. Genet Anal 15(2):35–40CrossRefGoogle Scholar
  69. 69.
    McCarthy EL, Bickerstaff LE, da Cunha MP, Millard PJ (2007) Nucleic acid sensing by regenerable surface-associated isothermal rolling circle amplification. Biosens Bioelectron 22(7):1236–1244. doi: 10.1016/j.bios.2006.05.001 CrossRefGoogle Scholar
  70. 70.
    Lee HY, Jeong H, Jung IY, Jang B, Seo YC, Lee H, Lee H (2015) DhITACT: DNA hydrogel formation by isothermal amplification of complementary target in fluidic channels. Adv Mater 27(23):3513–3517. doi: 10.1002/adma.201500414 CrossRefGoogle Scholar
  71. 71.
    Mokhtarzadeh A, Dolatabadi JE, Abnous K, de la Guardia M, Ramezani M (2015) Nanomaterial-based cocaine aptasensors. Biosens Bioelectron 68:95–106. doi: 10.1016/j.bios.2014.12.052 CrossRefGoogle Scholar
  72. 72.
    Wen Y, Pei H, Wan Y, Su Y, Huang Q, Song S, Fan C (2011) DNA nanostructure-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors. Anal Chem 83(19):7418–7423. doi: 10.1021/ac201491p CrossRefGoogle Scholar
  73. 73.
    Zhang CY, Yeh HC, Kuroki MT, Wang TH (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4(11):826–831CrossRefGoogle Scholar
  74. 74.
    Gill R, Zayats M, Willner I (2008) Semiconductor quantum dots for bioanalysis. Angew Chem 47(40):7602–7625. doi: 10.1002/anie.200800169 CrossRefGoogle Scholar
  75. 75.
    Li Y, Ji X, Liu B (2011) Chemiluminescence aptasensor for cocaine based on double-functionalized gold nanoprobes and functionalized magnetic microbeads. Anal Bioanal Chem 401(1):213–219. doi: 10.1007/s00216-011-5064-6 CrossRefGoogle Scholar
  76. 76.
    Bi S, Yan Y, Yang X, Zhang S (2009) Gold nanolabels for new enhanced chemiluminescence immunoassay of alpha-fetoprotein based on magnetic beads. Chemistry 15(18):4704–4709. doi: 10.1002/chem.200801722 CrossRefGoogle Scholar
  77. 77.
    Park SJ, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295(5559):1503–1506. doi: 10.1126/science.1067003 Google Scholar
  78. 78.
    He JL, Wu ZS, Zhou H, Wang HQ, Jiang JH, Shen GL, Yu RQ (2010) Fluorescence aptameric sensor for strand displacement amplification detection of cocaine. Anal Chem 82(4):1358–1364. doi: 10.1021/ac902416u CrossRefGoogle Scholar
  79. 79.
    Yang L, Fung CW, Cho EJ, Ellington AD (2007) Real-time rolling circle amplification for protein detection. Anal Chem 79(9):3320–3329. doi: 10.1021/ac062186b CrossRefGoogle Scholar
  80. 80.
    Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, Jones MF, Vetter EA, Yao JD, Wengenack NL, Rosenblatt JE, Cockerill FR 3rd, Smith TF (2006) Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev 19(1):165–256. doi: 10.1128/CMR.19.1.165-256.2006 CrossRefGoogle Scholar
  81. 81.
    Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson LG, Landegren U (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3(12):995–1000. doi: 10.1038/nmeth947 CrossRefGoogle Scholar
  82. 82.
    Nallur G, Luo C, Fang L, Cooley S, Dave V, Lambert J, Kukanskis K, Kingsmore S, Lasken R, Schweitzer B (2001) Signal amplification by rolling circle amplification on DNA microarrays. Nucleic Acids Res 29(23):e118CrossRefGoogle Scholar
  83. 83.
    Di Giusto DA, Wlassoff WA, Gooding JJ, Messerle BA, King GC (2005) Proximity extension of circular DNA aptamers with real-time protein detection. Nucleic Acids Res 33(6):e64. doi: 10.1093/nar/gni063 CrossRefGoogle Scholar
  84. 84.
    Kjallman TH, Peng H, Soeller C, Travas-Sejdic J (2008) Effect of probe density and hybridization temperature on the response of an electrochemical hairpin-DNA sensor. Anal Chem 80(24):9460–9466. doi: 10.1021/ac801567d CrossRefGoogle Scholar
  85. 85.
    Zhao XH, Kong RM, Zhang XB, Meng HM, Liu WN, Tan W, Shen GL, Yu RQ (2011) Graphene-DNAzyme based biosensor for amplified fluorescence "turn-on" detection of Pb2+ with a high selectivity. Anal Chem 83(13):5062–5066. doi: 10.1021/ac200843x CrossRefGoogle Scholar
  86. 86.
    Yin BC, Ye BC, Tan W, Wang H, Xie CC (2009) An allosteric dual-DNAzyme unimolecular probe for colorimetric detection of copper(II). J Am Chem Soc 131(41):14624–14625. doi: 10.1021/ja9062426 CrossRefGoogle Scholar
  87. 87.
    Guo L, Nie D, Qiu C, Zheng Q, Wu H, Ye P, Hao Y, Fu F, Chen G (2012) A G-quadruplex based label-free fluorescent biosensor for lead ion. Biosens Bioelectron 35(1):123–127. doi: 10.1016/j.bios.2012.02.031 CrossRefGoogle Scholar
  88. 88.
    He HZ, Leung KH, Yang H, Chan DS, Leung CH, Zhou J, Bourdoncle A, Mergny JL, Ma DL (2013) Label-free detection of sub-nanomolar lead(II) ions in aqueous solution using a metal-based luminescent switch-on probe. Biosens Bioelectron 41:871–874. doi: 10.1016/j.bios.2012.08.060 CrossRefGoogle Scholar
  89. 89.
    Wen Y, Peng C, Li D, Zhuo L, He S, Wang L, Huang Q, Xu QH, Fan C (2011) Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range. Chem Commun 47(22):6278–6280. doi: 10.1039/c1cc11486g CrossRefGoogle Scholar
  90. 90.
    Zhu Y, Zeng GM, Zhang Y, Tang L, Chen J, Cheng M, Zhang LH, He L, Guo Y, He XX, Lai MY, He YB (2014) Highly sensitive electrochemical sensor using a MWCNTs/GNPs-modified electrode for lead(II) detection based on Pb2+-induced G-rich DNA conformation. Analyst, U K) 139(19):5014–5020. doi: 10.1039/c4an00874j
  91. 91.
    Long YT, Kong C, Li DW, Li Y, Chowdhury S, Tian H (2011) Ultrasensitive determination of cysteine based on the photocurrent of Nafion-functionalized CdS-MV quantum dots on an ITO electrode. Small 7(12):1624–1628. doi: 10.1002/smll.201100427 CrossRefGoogle Scholar
  92. 92.
    Lu W, Jin Y, Wang G, Chen D, Li J (2008) Enhanced photoelectrochemical method for linear DNA hybridization detection using Au-nanopaticle labeled DNA as probe onto titanium dioxide electrode. Biosens Bioelectron 23(10):1534–1539. doi: 10.1016/j.bios.2008.01.011 CrossRefGoogle Scholar
  93. 93.
    Chen D, Zhang H, Li X, Li J (2010) Biofunctional titania nanotubes for visible-light-activated photoelectrochemical biosensing. Anal Chem 82(6):2253–2261. doi: 10.1021/ac9021055 CrossRefGoogle Scholar
  94. 94.
    Zang Y, Lei J, Hao Q, Ju H (2014) "Signal-on" photoelectrochemical sensing strategy based on target-dependent aptamer conformational conversion for selective detection of lead(II) ion. ACS Appl Mater Interfaces 6(18):15991–15997. doi: 10.1021/am503804g CrossRefGoogle Scholar
  95. 95.
    Fan X, White IM (2011) Optofluidic microsystems for chemical and biological analysis. Nat Photonics 5(10):591–597. doi: 10.1038/nphoton.2011.206 CrossRefGoogle Scholar
  96. 96.
    Long F, Zhu A, Wang H (2014) Optofluidics-based DNA structure-competitive aptasensor for rapid on-site detection of lead(II) in an aquatic environment. Anal Chim Acta 849:43–49. doi: 10.1016/j.aca.2014.08.015 CrossRefGoogle Scholar
  97. 97.
    Yuan M, Li Y, Li J, Li C, Liu X, Lv J, Xu J, Liu H, Wang S, Zhu D (2007) A colorimetric and fluorometric dual-model assay for mercury ion by a molecule. Org Lett 9(12):2313–2316. doi: 10.1021/ol0706399 CrossRefGoogle Scholar
  98. 98.
    Ye BC, Yin BC (2008) Highly sensitive detection of mercury(II) ions by fluorescence polarization enhanced by gold nanoparticles. Angew Chem 47(44):8386–8389. doi: 10.1002/anie.200803069 CrossRefGoogle Scholar
  99. 99.
    Baby TT, Ramaprabhu S (2010) SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor. Talanta 80(5):2016–2022. doi: 10.1016/j.talanta.2009.11.010 CrossRefGoogle Scholar
  100. 100.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  101. 101.
    Shen T, Yue Q, Jiang X, Wang L, Xu S, Li H, Gu X, Zhang S, Liu J (2013) A reusable and sensitive biosensor for total mercury in canned fish based on fluorescence polarization. Talanta 117:81–86. doi: 10.1016/j.talanta.2013.08.017
  102. 102.
    Osman O, Zanini LF, Frenea-Robin M, Dumas-Bouchiat F, Dempsey NM, Reyne G, Buret F, Haddour N (2012) Monitoring the endocytosis of magnetic nanoparticles by cells using permanent micro-flux sources. Biomed Microdevices 14(5):947–954. doi: 10.1007/s10544-012-9673-4 CrossRefGoogle Scholar
  103. 103.
    Upadhyay AK, Ting TW, Chen SM (2009) Amperometric biosensor for hydrogen peroxide based on coimmobilized horseradish peroxidase and methylene green in ormosils matrix with multiwalled carbon nanotubes. Talanta 79(1):38–45. doi: 10.1016/j.talanta.2009.03.010 CrossRefGoogle Scholar
  104. 104.
    Li D, Wieckowska A, Willner I (2008) Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew Chem 47(21):3927–3931. doi: 10.1002/anie.200705991 CrossRefGoogle Scholar
  105. 105.
    Liu J, Lu Y (2007) Rational design of "turn-on" allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew Chem 46(40):7587–7590. doi: 10.1002/anie.200702006 CrossRefGoogle Scholar
  106. 106.
    Lee J, Jun H, Kim J (2009) Polydiacetylene-liposome microarrays for selective and sensitive mercury(II) detection. Adv Mater 21(36):3674–3677. doi: 10.1002/adma.200900639 CrossRefGoogle Scholar
  107. 107.
    Yang YK, Ko SK, Shin I, Tae J (2007) Synthesis of a highly metal-selective rhodamine-based probe and its use for the in vivo monitoring of mercury. Nat Protoc 2(7):1740–1745. doi: 10.1038/nprot.2007.246 CrossRefGoogle Scholar
  108. 108.
    Wang S, Forzani ES, Tao N (2007) Detection of heavy metal ions in water by high-resolution surface plasmon resonance spectroscopy combined with anodic stripping voltammetry. Anal Chem 79(12):4427–4432. doi: 10.1021/ac0621773 CrossRefGoogle Scholar
  109. 109.
    Alvarez-Puebla RA, Liz-Marzan LM (2012) SERS detection of small inorganic molecules and ions. Angew Chem 51(45):11214–11223. doi: 10.1002/anie.201204438 CrossRefGoogle Scholar
  110. 110.
    Zhang L, Chang H, Hirata A, Wu H, Xue QK, Chen M (2013) Nanoporous gold based optical sensor for sub-ppt detection of mercury ions. ACS Nano 7(5):4595–4600. doi: 10.1021/nn4013737 CrossRefGoogle Scholar
  111. 111.
    Liu SJ, Nie HG, Jiang JH, Shen GL, Yu RQ (2009) Electrochemical sensor for mercury(II) based on conformational switch mediated by interstrand cooperative coordination. Anal Chem 81(14):5724–5730. doi: 10.1021/ac900527f CrossRefGoogle Scholar
  112. 112.
    Ramezani M, Mohammad Danesh N, Lavaee P, Abnous K, Mohammad Taghdisi S (2015) A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosens Bioelectron 70:181–187. doi: 10.1016/j.bios.2015.03.040 CrossRefGoogle Scholar
  113. 113.
    Verdian-Doghaei A, Housaindokht MR, Abnous K (2014) A fluorescent aptasensor for potassium ion detection-based triple-helix molecular switch. Anal Biochem 466:72–75. doi: 10.1016/j.ab.2014.08.014 CrossRefGoogle Scholar
  114. 114.
    Zheng J, Li JS, Jiang Y, Jin JY, Wang KM, Yang RH, Tan WH (2011) Design of aptamer-based sensing platform using triple-helix molecular switch. Anal Chem 83(17):6586–6592. doi: 10.1021/Ac201314y CrossRefGoogle Scholar
  115. 115.
    Shariati S, Yamini Y, Esrafili A (2009) Carrier mediated hollow fiber liquid phase microextraction combined with HPLC-UV for preconcentration and determination of some tetracycline antibiotics. J Chromatogr B 877(4):393–400. doi: 10.1016/j.jchromb.2008.12.042 CrossRefGoogle Scholar
  116. 116.
    Kurittu J, Lonnberg S, Virta M, Karp M (2000) A group-specific microbiological test for the detection of tetracycline residues in raw milk. J Agric Food Chem 48(8):3372–3377CrossRefGoogle Scholar
  117. 117.
    Jeon M, Rhee Paeng I (2008) Quantitative detection of tetracycline residues in honey by a simple sensitive immunoassay. Anal Chim Acta 626(2):180–185. doi: 10.1016/j.aca.2008.08.003 CrossRefGoogle Scholar
  118. 118.
    Zhou L, Li DJ, Gai L, Wang JP, Li YB (2012) Electrochemical aptasensor for the detection of tetracycline with multi-walled carbon nanotubes amplification. Sens Actuators B 162(1):201–208. doi: 10.1016/j.snb.2011.12.067 CrossRefGoogle Scholar
  119. 119.
    Tao HL, Wei LL, Liang AH, Li JF, Jiang ZL, Jiang HS (2010) Highly sensitive resonance scattering detection of DNA hybridization using aptamer-modified gold nanopaticle as catalyst. Plasmonics 5(2):189–198. doi: 10.1007/s11468-010-9133-z CrossRefGoogle Scholar
  120. 120.
    Luo Y, He L, Zhan S, Wu Y, Liu L, Zhi W, Zhou P (2014) Ultrasensitive resonance scattering (RS) spectral detection for trace tetracycline in milk using aptamer-coated nanogold (ACNG) as a catalyst. J Agric Food Chem 62(5):1032–1037. doi: 10.1021/jf403566e CrossRefGoogle Scholar
  121. 121.
    Battig MR, Soontornworajit B, Wang Y (2012) Programmable release of multiple protein drugs from aptamer-functionalized hydrogels via nucleic acid hybridization. J Am Chem Soc 134(30):12410–12413. doi: 10.1021/ja305238a CrossRefGoogle Scholar
  122. 122.
    Wu Y, Li C, Boldt F, Wang Y, Kuan SL, Tran TT, Mikhalevich V, Fortsch C, Barth H, Yang Z, Liu D, Weil T (2014) Programmable protein-DNA hybrid hydrogels for the immobilization and release of functional proteins. Chem Commun 50(93):14620–14622. doi: 10.1039/c4cc07144a CrossRefGoogle Scholar
  123. 123.
    Liu R, Huang Y, Ma Y, Jia S, Gao M, Li J, Zhang H, Xu D, Wu M, Chen Y, Zhu Z, Yang C (2015) Design and synthesis of target-responsive aptamer-cross-linked hydrogel for visual quantitative detection of ochratoxin A. ACS Appl Mater Interfaces 7(12):6982–6990. doi: 10.1021/acsami.5b01120 CrossRefGoogle Scholar
  124. 124.
    Song Y, Zhang Y, Bernard PE, Reuben JM, Ueno NT, Arlinghaus RB, Zu Y, Qin L (2012) Multiplexed volumetric bar-chart chip for point-of-care diagnostics. Nat Commun 3:1283. doi: 10.1038/ncomms2292 CrossRefGoogle Scholar
  125. 125.
    Park JH, Byun JY, Mun H, Shim WB, Shin YB, Li T, Kim MG (2014) A regeneratable, label-free, localized surface plasmon resonance (LSPR) aptasensor for the detection of ochratoxin A. Biosens Bioelectron 59:321–327. doi: 10.1016/j.bios.2014.03.059 CrossRefGoogle Scholar
  126. 126.
    Cho EM, Lee HS, Eom CY, Ohta A (2010) Construction of high sensitive detection system for endocrine disruptors with yeast n-alkane-assimilating Yarrowia lipolytica. J Microbiol Biotechnol 20(11):1563–1570CrossRefGoogle Scholar
  127. 127.
    Alonso-Magdalena P, Quesada I, Nadal A (2011) Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nat Rev Endocrinol 7(6):346–353. doi: 10.1038/nrendo.2011.56 CrossRefGoogle Scholar
  128. 128.
    Lehmann GM, Christensen K, Maddaloni M, Phillips LJ (2015) Evaluating health risks from inhaled polychlorinated biphenyls: research needs for addressing uncertainty. Environ Health Perspect 123(2):109–113. doi: 10.1289/ehp.1408564 Google Scholar
  129. 129.
    Rezg R, El-Fazaa S, Gharbi N, Mornagui B (2014) Bisphenol A and human chronic diseases: current evidences, possible mechanisms, and future perspectives. Environ Int 64:83–90. doi: 10.1016/j.envint.2013.12.007 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Il Young Jung
    • 1
  • Eun Hee Lee
    • 1
  • Ah Young Suh
    • 1
  • Seung Jin Lee
    • 1
  • Hyukjin Lee
    • 1
    Email author
  1. 1.College of Pharmacy, Graduate School of Pharmaceutical SciencesEwha Womans UniversitySeoulRepublic of Korea

Personalised recommendations