Skip to main content
Log in

Inter- and intra-organ spatial distributions of sea star saponins by MALDI imaging

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Saponins are secondary metabolites that are abundant and diversified in echinoderms. Mass spectrometry is increasingly used not only to identify saponin congeners within animal extracts but also to decipher the structure/biological activity relationships of these molecules by determining their inter-organ and inter-individual variability. The usual method requires extensive purification procedures to prepare saponin extracts compatible with mass spectrometry analysis. Here, we selected the sea star Asterias rubens as a model animal to prove that direct analysis of saponins can be performed on tissue sections. We also demonstrated that carboxymethyl cellulose can be used as an embedding medium to facilitate the cryosectioning procedure. Matrix-assisted laser desorption/ionization (MALDI) imaging was also revealed to afford interesting data on the distribution of saponin molecules within the tissues. We indeed highlight that saponins are located not only inside the body wall of the animals but also within the mucus layer that probably protects the animal against external aggressions.

Saponins are the most abundant secondary metabolites in sea stars. They should therefore participate in important biological activities. Here, MALDI imaging is presented as a powerful method to determine the spatial distribution of saponins within the animal tissues. The inhomogeneity of the intra-organ saponin distribution is highlighted, paving the way for future elegant structure/activity relationship investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li R, Zhou Y, Wu Z, Ding L (2006) ESI-Qq TOF-MS/MS and APCI-IT-MS/MS analysis of steroid saponins from the rhizomes of Dioscorea panthaica. J Mass Spectrom 41:1–22

    Article  Google Scholar 

  2. Mackie AM, Turner AB (1970) Partial characterization of biologically active steroid glycoside isolated from the starfish Marthasterias glacialis. Biochem J 117:543–550

    Article  CAS  Google Scholar 

  3. Kitagawa I, Kobayashi M (1977) On the structure of the major saponin from the starfish Acanthaster planci. Tetrahedron Lett 10:859–862

    Article  Google Scholar 

  4. Nigrelli RF (1952) The effect of holothurin on fish, and mice with sarcoma 180. Zoologica 37:89–90

    CAS  Google Scholar 

  5. Yamanouchi T (1955) On the poisonous substance contained in holothurians. Publ Seto Mar Biol Lab 4:183–203

    CAS  Google Scholar 

  6. Kubanek J, Pawlik J, Eve T, Fenical W (2000) Triterpene glycosides defend the Caribbean reef sponge Erylus formosus from predatory fishes. Mar Ecol Prog Ser 207:69–77

    Article  CAS  Google Scholar 

  7. Kubanek J, Walen K, Engel S, Kelly S, Henkel T, Fenical W, Pawlik J (2002) Multiple defensive roles for triterpene glycosides from two Caribbean sponges. Oecologia 13:125–136

    Article  Google Scholar 

  8. Van Dyck S, Gerbaux P, Flammang P (2009) Elucidation of molecular diversity and body distribution of saponins in the sea cucumber Holothuria forskali (Echinodermata) by mass spectrometry. Comp Biochem Physiol B Biochem Mol Biol 152:124–134

    Article  Google Scholar 

  9. Bondoc KG, Lee H, Cruz LJ, Lebrilla CB, Juinio-Menez MA (2013) Chemical fingerprinting and phylogenetic mapping of saponin congeners from three tropical holothurian sea cucumbers. Comp Biochem Physiol B Biochem Mol Biol 166:182–193

    Article  CAS  Google Scholar 

  10. Bahrami Y, Franco CMM (2015) Structure elucidation of new acetylated saponins, lessoniosides A, B, C, D, and E, and non-acetylated SAponins, lessoniosides F and G, from the viscera of the sea cucumber Holothuria lessoni. Mar Drugs 13:597–617

    Article  CAS  Google Scholar 

  11. Maier M (2008) Biological activities of sulfated glycosides from echinoderms. Stud Nat Prod Chem 35:311–354

    Article  CAS  Google Scholar 

  12. D’Auria MV, Minale L, Riccio R (1993) Polyoxygenated steroids of marine origin. Chem Rev 93:1839–1895

    Article  Google Scholar 

  13. Hostettmann K, Martson A (1995) Chemistry & pharmacology of natural products, Saponins. Cambridge University Press

  14. Prokof’eva NG, Chaikina EL, Kicha AA, Ivanchina NV (2003) Biological activities of steroid glycosides from starfish. Comp Biochem Physiol B Biochem Mol Biol 134:695–701

    Article  Google Scholar 

  15. Stonik VA, Kalinin VI, Avilov SA (1999) Toxins from sea cucumbers (holothuroids): chemical structures, properties, taxonomic distribution, biosynthesis and evolution. J Nat Toxins 8:235–248

    CAS  Google Scholar 

  16. Kalinin VI, Prokofieva NG, Likhatskaya GN, Schentsova EB, Agafonova IG, Avilov SA, Drozdova OA (1996) Hemolytic activities of triterpene glycosides from the holothurians order dendrochirotida: some trends in the evolution of this group of toxins. Toxicon 34:475–483

    Article  CAS  Google Scholar 

  17. Jorg MA, Vera K, Sven BA, Soren B (2011) Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 72:435–457

    Article  Google Scholar 

  18. Burnell DJ, Apsimon JW (1983) Echinoderm Saponins. Mar Nat Prod 5:287–389

    Article  CAS  Google Scholar 

  19. Kalinin VI, Anisimov MM, Prokofieva NG, Avilov SA, Afiyatullov SH, Stonik VA (1995) Biological activities and biological role of triterpene glycosides from holothuroids. Echinoderm Studies Balkerma, Rotterdam, pp 139–181

    Google Scholar 

  20. Bordbar S, Anwar F, Saari N (2011) High-value components and bioactives from sea cucumbers for functional foods—a review. Mar Drugs 9:1761–1805

    Article  CAS  Google Scholar 

  21. Mayo P, Mackie AM (1976) Studies of avoidance reactions in several species of predatory British Seastars (Echinodermata: Asteroidea). Mar Biol 38:41–49

    Article  Google Scholar 

  22. Harvey C, Garneau FX, Himmelman J (1987) Chemodetection of predatory seaster Leptasterias Polaris by whelk Buccinum undatum. Mar Ecol Prog Ser 40:79–86

    Article  Google Scholar 

  23. Mackie AM, Lasker R, Grant PT (1968) Avoidance reactions of mollusc Buccinum undatum to saponin-like surface-active substances in extracts of thenstarfish Asterias rubens and Martasterias glacialis. Comp Biochem Physiol B Biochem Mol Biol 26:415–428

    CAS  Google Scholar 

  24. Barkus G (1974) Toxicity in holothurians: a geographical pattern. Biotropica 6:229–236

    Article  Google Scholar 

  25. Garneau FX, Harvey C, Simard SL, Apsimon J, Burnell D, Himmelman J (1989) The distribution of asterosaponins in various body components of starfish Leptasterias Polaris. Comp Biochem Physiol B Biochem Mol Biol 92:411–416

    Article  Google Scholar 

  26. Kisha AA, Ivanchina NV, Kalinovsky AI, Dmitrenok PS, Stonik VA (2001) Sulfated steroid compounds from the starfish Aphelasterias japonica of the Kuril population. Comp Biochem Physiol B Biochem Mol Biol 128:43–52

    Article  Google Scholar 

  27. Demeyer M, De Winter J, Caulier G, Eeckhaut I, Flammang P, Gerbaux P (2014) Molecular diversity and body distribution of saponins in the sea star Asterias rubens by mass spectrometry. Comp Biochem Physiol B Biochem Mol Biol 168:1–11

    Article  CAS  Google Scholar 

  28. Mackie AM, Singh H, Owen J (1977) Studies on the distribution, biosynthesis and function of steroidal saponins in echinoderms. Comp Biochem Physiol B Biochem Mol Biol 56:9–14

    Article  CAS  Google Scholar 

  29. Voogt PA, Van Rheenen JWA (1982) Carbohydrate content and composition of asterosaponins from different organs of the sea star Asterias rubens: relation to their haemolytic activity and implications for their biosynthesis. Comp Biochem Physiol B Biochem Mol Biol 72:683–688

    Article  Google Scholar 

  30. Voogt PA, Huiskamp R (1979) Sex-dependance and seasonal variation of saponins in the gonads of the starfish Asterias rubens: their relation to reproduction. Comp Biochem Physiol 62:1049–1055

    Article  Google Scholar 

  31. Van Dyck S, Caulier G, Todesco M, Gerbaux P, Fournier I, Wisztorski M, Flammang P (2011) The triterpene glycosides of Holothuria forskali: usefulness and efficiency as a chemical defense mechanism against predatory fish. J Exp Biol 214:1347–1356

    Article  Google Scholar 

  32. Caulier G, Flammang P, Gerbaux P, Eeckhaut I (2013) When a repellent becomes an attractant: harmful saponins are kairomones attracting the symbiotic Harlequin crab. Sci Rep 3:1–5

    Article  Google Scholar 

  33. Thomas GE, Gruffydd LLD (1971) The types of escape reactions elicited in the scallop Pecten maximus by selected sea-star species. Mar Biol 10:87–93

    Article  Google Scholar 

  34. Naruse M, Suetomo H, Matsubara T, Sato T, Yanagawa H, Hoshi M, Matsumoto M (2010) Acrosome reaction-related steroidal saponin, Co-ARIS, from the starfish induces structural changes in microdomains. Dev Biol 347:147–153

    Article  CAS  Google Scholar 

  35. Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751–4760

    Article  CAS  Google Scholar 

  36. Franck J, Arafah K, Elayed M, Bonnel D, Vergara D, Jacquet A, Vinatier D, Wisztorski M, Day R, Fournier I, Salzet M (2009) MALDI imaging mass spectrometry, state of the art technology in clinical proteomics. Mol Cell Proteomics 8:2023–2033

    Article  CAS  Google Scholar 

  37. Sandvoss M, Huong Pham L, Levsen K, Preiss A (2000) Isolation and strucural elucidation of steroid oligoglycosides from the starfish Asterias rubens by means of direct online LC-NMR-MS hyphenation and one- and two-dimensional NMR investigations. Eur J Org Chem 7:1253–1262

    Article  Google Scholar 

  38. Sandvoss M, Weltring A, Preiss A, Levsen K, Wuensch G (2001) Combination of matrix solid-phase dispersion extraction and direct on-line liquid chromatography-nuclear magnetic resonance spectroscopy-tandem mass spectrometry as a new efficient approach for the rapid screening of natural products: application to the total asterosaponin fraction of the starfish Asterias rubens. J Chromatogr A 917:75–86

    Article  CAS  Google Scholar 

  39. Sandvoss M, Preiss A, Levsen K, Weisemann R (2003) Two new asterosaponins from the starfish Asterias rubens: application of a cryogenic NMR probe head. Magn Reson Chem 41:949–954

    Article  CAS  Google Scholar 

  40. De Marino S, Iorizzi M, Palagiano E, Zollo F, Roussakis C (1998) Starfish saponins 55 isolation, structure elucidation, and biological activity of the steroid oligoglycosides from an Antartic starfish of the family Asteriidae. J Nat Prod 61:1319–1327

    Article  Google Scholar 

  41. Kornprobst JM, Sallenave C, Barnathan G (1998) Sulfated compounds from marine organisms. Comp Biochem Physiol B Biochem Mol Biol 119:1–51

    Article  CAS  Google Scholar 

  42. Riccio R, Iorizzi M, Minale L (1986) Starfish saponins isolation of sixteen steroidal glycosides and three polyhydroxysteroids from the mediterreanen starfish Coscinasterias tenuispina. Bull Soc Chim Belg 95:869–893

    Article  CAS  Google Scholar 

  43. Tang HF, Yi YH, Li L, Sun P, Zhang SQ, Zhao YP (2005) Bioactive asterosaponins from the starfish Culcita novaeguineae. J Nat Prod 68:337–341

    Article  CAS  Google Scholar 

  44. Nelson K, Daniels G, Fournie J, Hemmer M (2013) Optimization of whole-body Zebrafish sectioning methods for mass spectrometry imaging. J Biomol Tech 24:119–127

    Article  Google Scholar 

  45. Hennebert E, Wattiez R, Waite JH, Flammang P (2012) Characterization of the protein fraction of the temporary adhesive secreted by the tube feet of the sea star Asterias rubens. Biofouling 28:289–303

    Article  CAS  Google Scholar 

  46. Jangoux M, Vloebergh M (1973) Contribution à l’étude du cycle annuel de reproduction d’une population d’Asterias rubens (Echinodermata, Asteroidea) du littoral belge. Neth J Sea Res 6:389–408

    Article  Google Scholar 

  47. Snovida SI, Rak-Banville JM, Perreault H (2008) On the use of DHB/aniline and DHB/N, N-dimethylaniline matrices for improved detection of carbohydrates: automated identification of oligosaccharides and quantitative analysis of sialylated glycans by MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom 19:1138–1146

    Article  CAS  Google Scholar 

  48. Heeren RMA, Smith DF, Stauber J, Kukrer-Kaletas B, MacAleese L (2009) Imaging mass spectrometry: hype or hope? J Am Soc Mass Spectrom 20:1006–1014

    Article  CAS  Google Scholar 

  49. Van Dyck S, Gerbaux P, Flammang P (2010) Qualitative and quantitative saponin contents in five sea cucumbers from the Indian Ocean. Mar Drugs 8:173–189

    Article  Google Scholar 

  50. Hermans C (1983) The duo-gland adhesive system. Oceanogr Mar Biol Annu Rev 21:283–339

    CAS  Google Scholar 

Download references

Acknowledgments

The MS laboratory acknowledges the “Fonds de la Recherche Scientifique (FRS-FNRS)” for its contribution to the acquisition of the Waters Q-ToF Premier Mass Spectrometer. E.H. and P.F. are, respectively, Postdoctoral Researcher and Research Director of the FRS-FNRS. M.D. is grateful to the F.R.I.A. for financial support. This work was supported by the FRFC research project no. T.0056.13 and in part by the EU FP7-OCEAN Project “Low-toxic cost-efficient environment-friendly antifouling materials” (BYEFOULING) under Grant Agreement no. 612717.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maxence Wisztorski, Patrick Flammang or Pascal Gerbaux.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 6773 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demeyer, M., Wisztorski, M., Decroo, C. et al. Inter- and intra-organ spatial distributions of sea star saponins by MALDI imaging. Anal Bioanal Chem 407, 8813–8824 (2015). https://doi.org/10.1007/s00216-015-9044-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9044-0

Keywords

Navigation