Skip to main content
Log in

Evaluation of changes induced in rice metabolome by Cd and Cu exposure using LC-MS with XCMS and MCR-ALS data analysis strategies

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The comprehensive analysis of untargeted metabolomics data acquired using LC-MS is still a major challenge. Different data analysis tools have been developed in recent years such as XCMS (various forms (X) of chromatography mass spectrometry) and multivariate curve resolution alternating least squares (MCR-ALS)-based strategies. In this work, metabolites extracted from rice tissues cultivated in an environmental test chamber were subjected to untargeted full-scan LC-MS analysis, and the obtained data sets were analyzed using XCMS and MCR-ALS. These approaches were compared in the investigation of the effects of copper and cadmium exposure on rice tissue (roots and aerial parts) samples. Both methods give, as a result of their application, the whole set of resolved elution and spectra profiles of the extracted metabolites in control and metal-treated samples, as well as the values of their corresponding chromatographic peak areas. The effects caused by the two considered metals on rice samples were assessed by further chemometric analysis and statistical evaluation of these peak area values. Results showed that there was a statistically significant interaction between the considered factors (type of metal of treatment and tissue). Also, the discrimination of the samples according to both factors was possible. A tentative identification of the most discriminant metabolites (biomarkers) was assessed. It is finally concluded that both XCMS- and MCR-ALS-based strategies provided similar results in all the considered cases despite the completely different approaches used by these two methods in the chromatographic peak resolution and detection strategies. Finally, advantages and disadvantages of using these two methods are discussed.

Summary of the workflow for untargeted metabolomics using the compared approaches

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fukusaki E, Kobayashi A (2005) Plant metabolomics: potential for practical operation. J Biosci Bioeng 100(4):347–354

    Article  CAS  Google Scholar 

  2. Xiao JF, Zhou B, Ressom HW (2012) Metabolite identification and quantitation in LC-MS/MS-based metabolomics. TrAC Trends Anal Chem 32:1–14

    Article  Google Scholar 

  3. Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13(1):11–29

    Article  CAS  Google Scholar 

  4. Lommen A (2009) Metalign: Interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal Chem 81(8):3079–3086

    Article  CAS  Google Scholar 

  5. Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:395

  6. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78(3):779–787

  7. Johnson CH, Ivanisevic J, Benton HP, Siuzdak G (2015) Bioinformatics: the next frontier of metabolomics. Anal Chem 87(1):147–156

  8. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS online: A web-based platform to process untargeted metabolomic data. Anal Chem 84(11):5035–5039

    Article  CAS  Google Scholar 

  9. Jaumot J, de Juan A, Tauler R (2015) MCR-ALS GUI 2.0: new features and applications. Chemometr Intell Lab 140:1–12

    Article  CAS  Google Scholar 

  10. Farrés M, Piña B, Tauler R (2014) Chemometric evaluation of Saccharomyces cerevisiae metabolic profiles using LC-MS. Metabolomics 11:210–224

  11. Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

  12. D’Alessandro A, Taamalli M, Gevi F, Timperio AM, Zolla L, Ghnaya T (2013) Cadmium stress responses in Brassica juncea: hints from proteomics and metabolomics. J Proteome Res 12(11):4979–4997

    Article  Google Scholar 

  13. Villiers F, Ducruix C, Hugouvieux V, Jarno N, Ezan E, Garin J, Junot C, Bourguignon J (2011) Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 11(9):1650–1663

    Article  CAS  Google Scholar 

  14. Järup L (2003) Hazards of heavy metal contamination. Brit Med Bull 68(1):167–182

    Article  Google Scholar 

  15. Ahsan N, Nakamura T, Komatsu S (2012) Differential responses of microsomal proteins and metabolites in two contrasting cadmium (Cd)-accumulating soybean cultivars under Cd stress. Amino Acids 42(1):317–327

    Article  CAS  Google Scholar 

  16. Antti H, Ebbels TMD, Keun HC, Bollard ME, Beckonert O, Lindon JC, Nicholson JK, Holmes E (2004) Statistical experimental design and partial least squares regression analysis of biofluid metabonomic NMR and clinical chemistry data for screening of adverse drug effects. Chemometr Intell Lab 73(1 SPEC. ISS):139–149

    Article  CAS  Google Scholar 

  17. Johnson HE, Lloyd AJ, Mur LAJ, Smith AR, Causton DR (2007) The application of MANOVA to analyse Arabidopsis thaliana metabolomic data from factorially designed experiments. Metabolomics 3(4):517–530

    Article  CAS  Google Scholar 

  18. Aina R, Labra M, Fumagalli P, Vannini C, Marsoni M, Cucchi U, Bracale M, Sgorbati S, Citterio S (2007) Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot 59(3):381–392

    Article  CAS  Google Scholar 

  19. Roth U, Von Roepenack-Lahaye E, Clemens S (2006) Proteome changes in Arabidopsis thaliana roots upon exposure to Cd 2+. J Exp Bot 57(15):4003–4013

    Article  CAS  Google Scholar 

  20. Huang SM, Toh W, Benke PI, Tan CS, Ong CN (2014). MetaboNexus: an interactive platform for integrated metabolomics analysis. Metabolomics 10:1084–1093

  21. Prince JT, Marcotte EM (2006) Chromatographic alignment of ESI-LC-MS proteomics data sets by ordered bijective interpolated warping. Anal Chem 78(17):6140–6152

    Article  CAS  Google Scholar 

  22. Tautenhahn R, Bottcher C, Neumann S (2008) Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 9:504

  23. De Juan A, Jaumot J, Tauler R (2014) Multivariate Curve Resolution (MCR). Solving the mixture analysis problem. Anal Methods 6(14):4964–4976

    Article  Google Scholar 

  24. de Juan A, Tauler R (2007) Factor analysis of hyphenated chromatographic data. Exploration, resolution and quantification of multicomponent systems. J Chromatogr A 1158(1–2):184–195

    Article  Google Scholar 

  25. Ruckebusch C, Blanchet L (2013) Multivariate curve resolution: a review of advanced and tailored applications and challenges. Anal Chim Acta 765:28–36

    Article  CAS  Google Scholar 

  26. Golub GH, Loan CFV (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  27. Windig W, Guilment J (1991) Interactive self-modeling mixture analysis. Anal Chem 63(14):1425–1432

    Article  CAS  Google Scholar 

  28. Tauler R, Maeder M, de Juan A (2010) Multiset data analysis: extended multivariate curve resolution. In: Brown SD, Tauler R, Walczak, B (ed) Comprehensive Chemometrics, vol 2. Elsevier B.V., Amsterdam, pp 473–505

  29. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometr Intell Lab 2(1–3):37–52

    Article  CAS  Google Scholar 

  30. Barker M, Rayens W (2003) Partial least squares for discrimination. J Chemom 17(3):166–173

    Article  CAS  Google Scholar 

  31. Jansen JJ, Hoefsloot HCJ, Van Der Greef J, Timmerman ME, Westerhuis JA, Smilde AK (2005) ASCA: analysis of multivariate data obtained from an experimental design. J Chemom 19(9):469–481

    Article  CAS  Google Scholar 

  32. Kuhl C, Tautenhahn R, Böttcher C, Larson TR, Neumann S (2012) CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal Chem 84(1):283–289

    Article  CAS  Google Scholar 

  33. Ortiz-Villanueva E, Jaumot J, Benavente F, Piña B, Sanz-Nebot V, Tauler R (2015) Combination of CE-MS and advanced chemometric methods for high-throughput metabolic profiling. Electrophoresis 36:2324–2335

  34. Schmidtke LM, Blackman JW, Clark AC, Grant-Preece P (2013) Wine metabolomics: objective measures of sensory properties of semillon from GC-MS profiles. J Agric Food Chem 61(49):11957–11967

    Article  CAS  Google Scholar 

  35. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Tanaka K, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45(7):703–714

    Article  CAS  Google Scholar 

  36. Tautenhahn R, Cho K, Uritboonthai W, Zhu Z, Patti GJ, Siuzdak G (2012) An accelerated workflow for untargeted metabolomics using the METLIN database. Nat Biotechnol 30(9):826–828

    Article  CAS  Google Scholar 

  37. Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, de Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythei I (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37(Suppl 1):D603–D610

    Article  CAS  Google Scholar 

  38. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40(D1):D109–D114

    Article  CAS  Google Scholar 

  39. Sun X, Zhang J, Zhang H, Ni Y, Zhang Q, Chen J, Guan Y (2010) The responses of Arabidopsis thaliana to cadmium exposure explored via metabolite profiling. Chemosphere 78(7):840–845

    Article  CAS  Google Scholar 

  40. Satterfield M, Brodbelt JS (2001) Structural characterization of flavonoid glycosides by collisionally activated dissociation of metal complexes. J Am Soc Mass Spectrom 12(5):537–549

    Article  CAS  Google Scholar 

  41. Gyurcsik B, Nagy L (2000) Carbohydrates as ligands: coordination equilibria and structure of the metal complexes. Coordin Chem Rev 203(1):81–149

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 320737. Also, recognition from the Catalan government (grant 2014 SGR 1106) is acknowledged. JJ acknowledges a CSIC JAE-Doc contract cofounded by the FSE, and AGR thanks CONICET for a fellowship.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquim Jaumot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarro-Reig, M., Jaumot, J., García-Reiriz, A. et al. Evaluation of changes induced in rice metabolome by Cd and Cu exposure using LC-MS with XCMS and MCR-ALS data analysis strategies. Anal Bioanal Chem 407, 8835–8847 (2015). https://doi.org/10.1007/s00216-015-9042-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9042-2

Keywords

Navigation