Skip to main content
Log in

Moving-window two-dimensional correlation infrared spectroscopic study on the dissolution process of poly(vinyl alcohol)

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, the dissolution process of fully hydrolyzed polyvinyl alcohol (PVA) was investigated by temperature–dependent Fourier transform infrared spectroscopy (FTIR) combined with moving-window two-dimensional (MW2D) correlation infrared spectroscopy (IR). The results show that the FTIR spectra of PVA in OH stretching and bending regions exceed the measuring range of the spectrometer because of the presence of abundant water. The OH stretching and bending peaks reveal that the water mainly diffuses into amorphous region below 45 °C, and water molecules mainly diffuse into crystalline region above 45 °C. The peak at 1141 cm–1 has ever been thought as the indication of crystallinity of PVA in solid state, but in solution, the peak does not decrease with the dissolution of crystalline region and finally increases when PVA is dissolved completely. The hydrogen bonds between hydroxyl groups in PVA chains are broken by water molecules but abundant new hydrogen bonds between hydroxyl groups in PVA chains and water molecules are formed during the dissolving process. In the 2D correlation analysis of the FTIR spectra, only the correlation movements of hydroxyl groups, including stretching and bending mode, can be observed. The correlation range and intensity are larger than that of PVA in solid state because the dissolution is the interaction process of water molecules diffusing into PVA chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chiellini E, Corti A, D’Antone S, Solaro R (2003) Prog Polym Sci 28:963–1014

    Article  CAS  Google Scholar 

  2. Dai LX, Yu SY (2003) Polym Adv Technol 14:449–457

    Article  CAS  Google Scholar 

  3. Amiya S, Tsuchiya S, Qian R, Nakajim A (1990) Pure Appl Chem 62:2139–2146

    Article  CAS  Google Scholar 

  4. De Prisco N, Immirzi B, Malinconico M, Mormile P, Petti L, Gatta G (2002) J Appl Polym Sci 86:622–632

    Article  Google Scholar 

  5. Xiao S, Huang RYM, Feng X (2006) J Mem Sci 286:245–254

    Article  CAS  Google Scholar 

  6. Isasi JR, Cesteros LC, Katime I (1994) Macromolecules 27:2200–2205

    Article  CAS  Google Scholar 

  7. Costa L, Avataneo M, Bracco P, Brunella V (2002) Polym Degrad Stab 77:503–510

    Article  CAS  Google Scholar 

  8. Du H, Zhang J (2010) Colloid Polym Sci 288:15–24

    Article  CAS  Google Scholar 

  9. Chen D, Hu B, Shao X, Su Q (2004) Anal Bioanal Chem 379:143–148

    Article  CAS  Google Scholar 

  10. Zhang Y, Zhu PC, Edgren D (2010) J Polym Res 17:725–730

    Article  CAS  Google Scholar 

  11. Noda I, Dowrey AE, Marcott C, Story GM, Ozaki Y (2000) Appl Spectrosc 54:236–248

    Article  Google Scholar 

  12. Morita S, Shinzawa H, Noda I, Ozaki Y (2006) Appl Spectrosc 60:398–406

    Article  CAS  Google Scholar 

  13. Thomas M, Richardson HH (2000) Vib Spectrosc 24:137–146

    Article  CAS  Google Scholar 

  14. Lee MH, Chen YC, Ho MH, Lin HY (2010) Anal Bioanal Chem 397:1457–1466

    Article  CAS  Google Scholar 

  15. Watanabe A, Morita S, Ozaki Y (2007) Biomacromolecules 8:2969–2975

    Article  CAS  Google Scholar 

  16. Watanabe A (2006) MoritaS, Ozaki Y. Biomacromolecules 7:3164–3170

    Article  CAS  Google Scholar 

  17. Jung YM, Noda I (2006) Appl Spectrosc Rev 41:515–547

    Article  CAS  Google Scholar 

  18. Noda I (1989) J Am Chem Soc 111:8116–8118

    Article  CAS  Google Scholar 

  19. Wu YQ, Meersman F, Ozaki Y (2006) Macromolecules 39:1182–1188

    Article  CAS  Google Scholar 

  20. Wu YQ, Jiang SM, Ozaki Y (2004) Spectrochim Acta, Part A 60:1931–1939

    Article  Google Scholar 

  21. Morita S, Kitagawa K, Noda I, Ozaki Y (2008) J Mol Struct 883/884:181–186

    Article  Google Scholar 

  22. Du H, Zhou T, Zhang J, Liu X (2010) Anal Bioanal Chem 397:3127–3132

    Article  CAS  Google Scholar 

  23. Zhou T, Zhang A, Zhao C, Liang H, Wu Z, Xia J (2007) Macromolecules 40:9009–9017

    Article  CAS  Google Scholar 

  24. Morita S, Shinzawa H, Noda I, Ozaki Y (2006) J Mol Struct 799:16–22

    Article  CAS  Google Scholar 

  25. Savitzky A, Golay MJE (1964) Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  26. Holland BJ, Hay JN (2002) Polymer 43:2207–2211

    Article  CAS  Google Scholar 

  27. Mitic Z, Nikolic GS, Cakic M, Premovic P, Ilic L (2009) J Mol Struct 924/926:264–273

    Article  Google Scholar 

  28. Mitic Z, Nikolic GS, Cakic M, Nikolic RS, Ilic L (2007) Hem Ind 61:257–262

    Article  CAS  Google Scholar 

  29. Mitic Z, Cakic M, Nikolic GS, Ilic L, Stankovic M (2010) Hem Ind 64:9–20

    Article  CAS  Google Scholar 

  30. Briscoe B (2000) Luckha mP, Zhu S. Polymer 41:3851–3860

    Article  CAS  Google Scholar 

  31. Sugiura K, Hashimoto M, Matsuzawa S, Yamaura K (2001) J Appl Polym Sci 82:1291–1298

    Article  CAS  Google Scholar 

  32. Mitic Z, Cakic M, Nikolic GM, Nikolic R, Nikolic GS, Pavlovic R, Santaniello E (2011) Carbohydr Res 346:434–441

    Article  CAS  Google Scholar 

  33. Nikolic GS, Cakic M, Mitic Z (2008) Ilic Lj. J Coord Chem 34:322–328

    Article  CAS  Google Scholar 

  34. Mitic Z, Cakic M, Nikolic G (2010) Spectroscopy 24:269–275

    Article  Google Scholar 

  35. Cakic M, Mitic Z, Nikolic GS, Ilic L, Nikolic GM (2008) Spectroscopy 22:177–185

    Article  CAS  Google Scholar 

  36. Mansur HS, Orefice RL, Mansur AAP (2004) Polymer 45:7193–7202

    Article  CAS  Google Scholar 

  37. Hennink WE, Nostrum CF (2002) Adv Drug Deliv Rev 54:13–36

    Article  CAS  Google Scholar 

  38. Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) Mat Sci Eng C-Mater 28:539–548

    Article  CAS  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. We don’t have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, B., Zhang, J. & Zhou, T. Moving-window two-dimensional correlation infrared spectroscopic study on the dissolution process of poly(vinyl alcohol). Anal Bioanal Chem 407, 8765–8771 (2015). https://doi.org/10.1007/s00216-015-9035-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9035-1

Keywords

Navigation