Skip to main content
Log in

Comparative chemistry and toxicity of diesel and biomass combustion emissions

  • Feature Article
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Yip FY, Pearcy JN, Garbe PL, Truman BI (2011) Unhealthy air quality - United States, 2006-2009. MMWR Surveill Summ 60(Suppl):28–32

    Google Scholar 

  2. Dockery DW, Pope CA 3rd, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG Jr, Speizer FE (1993) An association between air pollution and mortality in six U.S. cities. N Engl J Med 329(24):1753–1759

    Article  CAS  Google Scholar 

  3. Laden F, Schwartz J, Speizer FE, Dockery DW (2006) Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard Six Cities study. Am J Respir Crit Care Med 173(6):667–672

    Article  CAS  Google Scholar 

  4. Vedal S, Campen MJ, McDonald JD, Larson TV, Sampson PD, Sheppard L, Simpson CD, Szpiro AA (2013) National Particle Component Toxicity (NPACT) initiative report on cardiovascular effects. Res Rep Health Eff Inst 178:5–8

    Google Scholar 

  5. Mauderly JL, Barrett EG, Day KC, Gigliotti AP, McDonald JD, Harrod KS, Lund AK, Reed MD, Seagrave JC, Campen MJ, Seilkop SK (2014) The National Environmental Respiratory Center (NERC) experiment in multi-pollutant air quality health research: II. Comparison of responses to diesel and gasoline engine exhausts, hardwood smoke and simulated downwind coal emissions. Inhal Toxicol 26(11):651–667

    Article  CAS  Google Scholar 

  6. Mauderly JL, Seilkop SK (2014) The National Environmental Respiratory Center (NERC) experiment in multi-pollutant air quality health research: III. Components of diesel and gasoline engine exhausts, hardwood smoke and simulated downwind coal emissions driving non-cancer biological responses in rodents. Inhal Toxicol 26(11):668–690

    Article  CAS  Google Scholar 

  7. Kraus U, Breitner S, Schnelle-Kreis J, Cyrys J, Lanki T, Ruckerl R, Schneider A, Bruske I, Gu J, Devlin R, Wichmann HE, Zimmermann R, Peters A (2011) Particle-associated organic compounds and symptoms in myocardial infarction survivors. Inhal Toxicol 23(7):431–447

    Article  CAS  Google Scholar 

  8. Li N, Hao M, Phalen RF, Hinds WC, Nel AE (2003) Particulate air pollutants and asthma. A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin Immunol 109(3):250–265

    Article  CAS  Google Scholar 

  9. Stoeger T, Takenaka S, Frankenberger B, Ritter B, Karg E, Maier K, Schulz H, Schmid O (2009) Deducing in vivo toxicity of combustion-derived nanoparticles from a cell-free oxidative potency assay and metabolic activation of organic compounds. Environ Health Perspect 117(1):54–60

    Article  CAS  Google Scholar 

  10. Kittelson DB (1998) Engines and nanoparticles: a review. J Aerosol Sci 29(5–6):575–588

    Article  CAS  Google Scholar 

  11. Krivoshto IN, Richards JR, Albertson TE, Derlet RW (2008) The toxicity of diesel exhaust: implications for primary care. J Am Board Fam Med 21(1):55–62

    Article  Google Scholar 

  12. Ris C (2007) U.S. EPA health assessment for diesel engine exhaust: a review. Inhal Toxicol 19(Suppl 1):229–239

    Article  CAS  Google Scholar 

  13. Sharp J (2003) The public health impact of diesel particulate matter. Toronto

  14. Nemmar A, Hoet PH, Vermylen J, Nemery B, Hoylaerts MF (2004) Pharmacological stabilization of mast cells abrogates late thrombotic events induced by diesel exhaust particles in hamsters. Circulation 110(12):1670–1677

    Article  Google Scholar 

  15. Yokota S, Furuya M, Seki T, Marumo H, Ohara N, Kato A (2004) Delayed exacerbation of acute myocardial ischemia/reperfusion-induced arrhythmia by tracheal instillation of diesel exhaust particles. Inhal Toxicol 16(5):319–331

    Article  CAS  Google Scholar 

  16. Calderon-Garciduenas L, Reed W, Maronpot RR, Henriquez-Roldan C, Delgado-Chavez R, Calderon-Garciduenas A, Dragustinovis I, Franco-Lira M, Aragon-Flores M, Solt AC, Altenburg M, Torres-Jardon R, Swenberg JA (2004) Brain inflammation and Alzheimer's-like pathology in individuals exposed to severe air pollution. Toxicol Pathol 32(6):650–658

    Article  Google Scholar 

  17. Stevens T, Cho SH, Linak WP, Gilmour MI (2009) Differential potentiation of allergic lung disease in mice exposed to chemically distinct diesel samples. Toxicol Sci 107(2):522–534

    Article  CAS  Google Scholar 

  18. Stevens T, Hester S, Gilmour MI (2010) Differential transcriptional changes in mice exposed to chemically distinct diesel samples. Biomed Inform Insights 3:29–52

    Article  Google Scholar 

  19. Gilmour MI (2012) Influence of air pollutants on allergic sensitization: the paradox of increased allergies and decreased resistance to infection. Toxicol Pathol 40(2):312–314

    Article  CAS  Google Scholar 

  20. Bemis JC, Torous DK, Dertinger SD (2012) Part 2. Assessment of genotoxicity after exposure to diesel exhaust from U.S. 2007-compliant diesel engines: Report on 1- and 3-month exposures in the ACES bioassay. Advanced Collaborative Emissions Study (ACES) Subchronic Exposure Results: Biologic Responses in Rats and Mice and Assessment of Genotoxicity. Research Report 166. Boston, MA

  21. Conklin DJ, Kong M (2012) Part 4. Effects of subchronic diesel engine emissions exposure on plasma markers in rodents: report on 1- and 3-month exposures in the ACES bioassay. Advanced Collaborative Emissions Study (ACES) Subchronic Exposure Results: Biologic Responses in Rats and Mice and Assessment of Genotoxicity. Research Report 166. Boston, MA

  22. Hallberg LM, Ward JB, Hernandez C, Ameredes BT, Wickliffe JK (2012) Part 3. Assessment of genotoxicity and oxidative stress after exposure to diesel exhaust from U.S. 2007-compliant diesel engines: report on 1- and 3-month exposures in the ACES bioassay. Advanced Collaborative Emissions Study (ACES) subchronic exposure results: biologic responses in rats and mice and assessment of genotoxicity. Research Report 166. Boston, MA

  23. Khalek IA, Blanks MG, Merritt PM (2013) Phase 2 of the advanced collaborative emissions study. Alpharetta

  24. McDonald JD, Doyle-Eisele M, Gigliotti AP, Miller RA, Seilkop SK, Mauderly JL, Seagrave JC, Chow J, Zielinska B (2012) Part 1. Biologic responses in rats and mice to subchronic inhalation of diesel exhaust from U.S. 2007-compliant engines: report on 1-, 3-, and 12-month exposures in the ACES bioassay. Advanced Collaborative Emissions Study (ACES) subchronic exposure results: biologic responses in rats and mice and assessment of genotoxicity. Research Report 166. Boston, MA

  25. Robinson MS, Chavez J, Velazquez S, Jayanty RK (2004) Chemical speciation of PM2.5 collected during prescribed fires of the Coconino National Forest near Flagstaff, Arizona. J Air Waste Manag Assoc 54(9):1112–1123

    Article  CAS  Google Scholar 

  26. Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, Smith KR (2007) Woodsmoke health effects: a review. Inhal Toxicol 19(1):67–106

    Article  CAS  Google Scholar 

  27. Rappold AG, Stone SL, Cascio WE, Neas LM, Kilaru VJ, Carraway MS, Szykman JJ, Ising A, Cleve WE, Meredith JT, Vaughan-Batten H, Deyneka L, Devlin RB (2011) Peat bog wildfire smoke exposure in rural North Carolina is associated with cardiopulmonary emergency department visits assessed through syndromic surveillance. Environ Health Perspect 119(10):1415–1420

    Article  Google Scholar 

  28. Yao J, Eyamie J, Henderson SB (2014) Evaluation of a spatially resolved forest fire smoke model for population-based epidemiologic exposure assessment. J Expo Sci Environ Epidemiol

  29. Arrieta O, Martinez-Barrera L, Trevino S, Guzman E, Castillo-Gonzalez P, Rios-Trejo MA, Flores-Estrada D, Tellez E, Gonzalez C, de la Cruz VJ, Gonzalez-De la Rosa CH, Hernandez-Pedro N, Morales-Barrera R, De la Garza J (2008) Wood-smoke exposure as a response and survival predictor in erlotinib-treated non-small cell lung cancer patients: an open label phase II study. J Thorac Oncol 3(8):887–893

    Article  Google Scholar 

  30. Hernandez-Garduno E, Brauer M, Perez-Neria J, Vedal S (2004) Wood smoke exposure and lung adenocarcinoma in non-smoking Mexican women. Int J Tuberc Lung Dis 8(3):377–383

    CAS  Google Scholar 

  31. Migliaccio CT, Mauderly JL (2010) Biomass smoke exposures: toxicology and animal study design. Inhal Toxicol 22(2):104–107

    Article  CAS  Google Scholar 

  32. Kim YH, Tong H, Daniels M, Boykin E, Krantz QT, McGee J, Hays M, Kovalcik K, Dye JA, Gilmour MI (2014) Cardiopulmonary toxicity of peat wildfire particulate matter and the predictive utility of precision cut lung slices. Part Fibre Toxicol 11:29

    Article  Google Scholar 

  33. Franzi LM, Bratt JM, Williams KM, Last JA (2011) Why is particulate matter produced by wildfires toxic to lung macrophages? Toxicol Appl Pharmacol 257(2):182–188

    Article  CAS  Google Scholar 

  34. Wegesser TC, Franzi LM, Mitloehner FM, Eiguren-Fernandez A, Last JA (2010) Lung antioxidant and cytokine responses to coarse and fine particulate matter from the great California wildfires of 2008. Inhal Toxicol 22(7):561–570

    Article  CAS  Google Scholar 

  35. Wegesser TC, Pinkerton KE, Last JA (2009) California wildfires of 2008: coarse and fine particulate matter toxicity. Environ Health Perspect 117(6):893–897

    Article  Google Scholar 

  36. Liberati TA, Randle MR, Toth LA (2010) In vitro lung slices: a powerful approach for assessment of lung pathophysiology. Expert Rev Mol Diagn 10(4):501–508

    Article  Google Scholar 

  37. Price RJ, Renwick AB, Wield PT, Beamand JA, Lake BG (1995) Toxicity of 3-methylindole, 1-nitronaphthalene and paraquat in precision-cut rat lung slices. Arch Toxicol 69(6):405–409

    Article  CAS  Google Scholar 

  38. Vickers AE, Jimenez RM, Spaans MC, Pflimlin V, Fisher RL, Brendel K (1997) Human and rat lung biotransformation of cyclosporin A and its derivatives using slices and bronchial epithelial cells. Drug Metab Dispos 25(7):873–880

    CAS  Google Scholar 

  39. Sanderson MJ (2011) Exploring lung physiology in health and disease with lung slices. Pulm Pharmacol Ther 24(5):452–465

    Article  CAS  Google Scholar 

  40. Sewald K, Braun A (2013) Assessment of immunotoxicity using precision-cut tissue slices. Xenobiotica 43(1):84–97

    Article  CAS  Google Scholar 

  41. Lauenstein L, Switalla S, Prenzler F, Seehase S, Pfennig O, Forster C, Fieguth H, Braun A, Sewald K (2014) Assessment of immunotoxicity induced by chemicals in human precision-cut lung slices (PCLS). Toxicol In Vitro 28(4):588–599

    Article  CAS  Google Scholar 

  42. Kim YH, Boykin E, Stevens T, Lavrich K, Gilmour MI (2014) Comparative lung toxicity of engineered nanomaterials utilizing in vitro, ex vivo and in vivo approaches. J Nanobiotechnol 12:47

    Article  Google Scholar 

  43. Prather KA, Nordmeyer T, Salt K (1994) Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry. Anal Chem 66(9):1403–1407

    Article  CAS  Google Scholar 

  44. Canagaratna MR, Jayne JT, Jimenez JL, Allan JD, Alfarra MR, Zhang Q, Onasch TB, Drewnick F, Coe H, Middlebrook A, Delia A, Williams LR, Trimborn AM, Northway MJ, DeCarlo PF, Kolb CE, Davidovits P, Worsnop DR (2007) Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom Rev 26(2):185–222

    Article  CAS  Google Scholar 

  45. Williams BJ, Goldstein AH, Kreisberg NM, Hering SV (2006) An in-situ instrument for speciated organic composition of atmospheric aerosols: thermal desorption aerosol GC/MS-FID (TAG). Aerosol Sci Technol 40(8):627–638

    Article  CAS  Google Scholar 

  46. Williams BJ, Goldstein AH, Kreisberg NM, Hering SV (2010) In situ measurements of gas/particle-phase transitions for atmospheric semivolatile organic compounds. Proc Natl Acad Sci U S A 107(15):6676–6681

    Article  CAS  Google Scholar 

  47. Laskin A, Smith JS, Laskin J (2009) Molecular characterization of nitrogen-containing organic compounds in biomass burning aerosols using high-resolution mass spectrometry. Environ Sci Technol 43(10):3764–3771

    Article  CAS  Google Scholar 

  48. Robinson AL, Donahue NM, Shrivastava MK, Weitkamp EA, Sage AM, Grieshop AP, Lane TE, Pierce JR, Pandis SN (2007) Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 315(5816):1259–1262

    Article  CAS  Google Scholar 

  49. Grabowsky J, Streibel T, Sklorz M, Chow JC, Watson JG, Mamakos A, Zimmermann R (2011) Hyphenation of a carbon analyzer to photo-ionization mass spectrometry to unravel the organic composition of particulate matter on a molecular level. Anal Bioanal Chem 401(10):3153–3164

    Article  CAS  Google Scholar 

  50. Bae M-S, Schauer JJ, DeMinter JT, Turner JR, Smith D, Cary RA (2004) Validation of a semi-continuous instrument for elemental carbon and organic carbon using a thermal-optical method. Atmos Environ 38(18):2885–2893

    Article  CAS  Google Scholar 

  51. Lee BH, Kostenidou E, Hildebrandt L, Riipinen I, Engelhart GJ, Mohr C, DeCarlo PF, Mihalopoulos N, Prevot ASH, Baltensperger U, Pandis SN (2010) Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008). Atmos Chem Phys 10:12149–12160

    Article  CAS  Google Scholar 

  52. Abdul-Khalek I, Kittelson D (1995) Real time measurement of volatile and solid exhaust particles using a catalytic stripper. SAE Technical Paper 950236

  53. Fang M, Stapleton HM (2014) Evaluating the bioaccessibility of flame retardants in house dust using an in vitro Tenax bead-assisted sorptive physiologically based method. Environ Sci Technol 48(22):13323–13330

    Article  CAS  Google Scholar 

  54. Tilston EL, Gibson GR, Collins CD (2011) Colon extended physiologically based extraction test (CE-PBET) increases bioaccessibility of soil-bound PAH. Environ Sci Technol 45(12):5301–5308

    Article  CAS  Google Scholar 

Download references

Disclaimer

The research described in this article has been reviewed by the National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the agency. We are grateful to Dr. Wayne Cascio for careful review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ian Gilmour.

Additional information

Published in the topical collection Aerosols and Health with guest editor Ralf Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilmour, M.I., Kim, Y.H. & Hays, M.D. Comparative chemistry and toxicity of diesel and biomass combustion emissions. Anal Bioanal Chem 407, 5869–5875 (2015). https://doi.org/10.1007/s00216-015-8797-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8797-9

Keywords

Navigation