Skip to main content

Advertisement

Log in

A simple method for the subnanomolar quantitation of seven ophthalmic drugs in the rabbit eye

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This study describes the development and validation of a new liquid chromatography–tandem mass spectrometry (MS/MS) method capable of simultaneous quantitation of seven ophthalmic drugs—pilocarpine, lidocaine, atropine, proparacaine, timolol, prednisolone, and triamcinolone acetonide—within regions of the rabbit eye. The complete validation of the method was performed using an Agilent 1100 series high-performance liquid chromatography system coupled to a 4000 QTRAP MS/MS detector in positive TurboIonSpray mode with pooled drug solutions. The method sensitivity, evaluated by the lower limit of quantitation in two simulated matrices, yielded lower limits of quantitation of 0.25 nmol L-1 for most of the drugs. The precision in the low, medium, and high ranges of the calibration curves, the freeze–thaw stability over 1 month, the intraday precision, and the interday precision were all within a 15 % limit. The method was used to quantitate the different drugs in the cornea, aqueous humor, vitreous humor, and remaining eye tissues of the rabbit eye. It was validated to a concentration of up to 1.36 ng/g in humors and 5.43 ng/g in tissues. The unprecedented low detection limit of the present method and its ease of implementation allow easy, robust, and reliable quantitation of multiple drugs for rapid in vitro and in vivo evaluation of the local pharmacokinetics of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Järvinen K, Järvinen T, Urtti A (1995) Ocular absorption following topical delivery. Adv Drug Deliv Rev 16(1):3–19

    Article  Google Scholar 

  2. Abelson MB, Stein L (2014) A recipe for better patient compliance. Rev Ophthalmol 21(4):70–76

  3. Feke GT, Tagawa H, Deupree DM, Goger DG, Sebag J, Weiter JJ (1989) Blood flow in the normal human retina. Investig Ophthalmol Vis Sci 30(1):58–65

    CAS  Google Scholar 

  4. Williamson TH (1994) What is the use of ocular blood flow measurement? Br J Ophthalmol 78(5):326

    Article  CAS  Google Scholar 

  5. Williamson TH, Harris A (1994) Ocular blood flow measurement. Br J Ophthalmol 78(12):939–945

    Article  CAS  Google Scholar 

  6. Zimmer A, Mutschler E, Lambrecht G, Mayer D, Kreuter J (1994) Pharmacokinetic and pharmacodynamic aspects of an ophthalmic pilocarpine nanoparticle-delivery-system. Pharm Res 11(10):1435–1442

    Article  CAS  Google Scholar 

  7. Yasukawa T, Ogura Y, Kimura H, Sakurai E, Tabata Y (2006) Drug delivery from ocular implants. Expert Opin Drug Deliv 3(2):261–273

    Article  CAS  Google Scholar 

  8. Liu S, Jones L, Gu FX (2012) Nanomaterials for ocular drug delivery. Macromol Biosci 12(5):608–620

    Article  CAS  Google Scholar 

  9. Achouri D, Alhanout K, Piccerelle P, Andrieu V (2013) Recent advances in ocular drug delivery. Drug Dev Ind Pharm 39(11):1599–1617

    Article  CAS  Google Scholar 

  10. Ciolino JB, Stefanescu CF, Ross AE, Salvador-Culla B, Cortez P, Ford EM, Wymbs KA, Sprague SL, Mascoop DR, Rudina SS, Trauger SA, Cade F, Kohane DS (2014) In vivo performance of a drug-eluting contact lens to treat glaucoma for a month. Biomaterials 35(1):432–439

    Article  CAS  Google Scholar 

  11. Yang H, Tyagi P, Kadam RS, Holden CA, Kompella UB (2012) Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration. ACS Nano 6(9):7595–7606

    Article  CAS  Google Scholar 

  12. Uusitalo RJ, Palkama A (1994) Efficacy and safety of timolol/pilocarpine combination drops in glaucoma patients. Acta Ophthalmol (Copenh) 72(4):496–504

    Article  CAS  Google Scholar 

  13. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS (2011) DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. Nucleic Acids Res 39:D1035–D1041

    Article  CAS  Google Scholar 

  14. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, Tang A, Gabriel G, Ly C, Adamjee S, Dame ZT, Han B, Zhou Y, Wishart DS (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42:D1091–D1097

    Article  CAS  Google Scholar 

  15. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36:D901–D906

    Article  CAS  Google Scholar 

  16. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34:D668–D672

    Article  CAS  Google Scholar 

  17. Diebold Y, Jarrín M, Sáez V, Carvalho ELS, Orea M, Calonge M, Seijo B, Alonso MJ (2007) Ocular drug delivery by liposome–chitosan nanoparticle complexes (LCS-NP). Biomaterials 28(8):1553–1564

    Article  CAS  Google Scholar 

  18. Rathore KS, Nema RK, Sisodia SS (2010) Preparation and characterization of timolol maleate ocular films. Int J PharmTech Res 2(3):1995–2000

  19. Sariri R, Ghafoori H (2008) Tear proteins in health, disease, and contact lens wear. Biochem Biokhim 73(4):381–392

    Article  CAS  Google Scholar 

  20. International conference on the harmonization of technical requirements for the registration of pharmaceuticals for human use (2005) ICH harmonized tripartite guideline validation of analytical procedures: text and methodology Q2 (R1). Current Step 4 version, Parent Guideline dated 27 October 1994. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf. Accessed 16 Feb 2015

  21. Food and drug Administration (2013) Guidance for industry: bioanalytical method validation. Rockville, MD: US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm368107.pdf. Accessed 16 Feb 2015

  22. Polson C, Sarkar P, Incledon B, Raguvaran V, Grant R (2003) Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography–tandem mass spectrometry. J Chromatogr B 785(2):263–275

    Article  CAS  Google Scholar 

  23. Ali HSM, York P, Blagden N, Soltanpour S, Acree WE, Jouyban A (2009) Solubility of budesonide, hydrocortisone, and prednisolone in ethanol + water mixtures at 298.2 K. J Chem Eng Data 55(1):578–582

    Article  Google Scholar 

  24. Block LH, Patel RN (1973) Solubility and dissolution of triamcinolone acetonide. J Pharm Sci 62(4):617–621

    Article  CAS  Google Scholar 

  25. van de Merbel NC, Tinke AP, Oosterhuis B, Jonkman JHG, Bohle JF (1998) Determination of pilocarpine, isopilocarpine, pilocarpic acid and isopilocarpic acid in human plasma and urine by high-performance liquid chromatography with tandem mass spectrometric detection. J Chromatogr B 708(1–2):103–112

    Article  Google Scholar 

  26. ter Weijden E, van den Broek MPH, Ververs FFT (2012) Easy and fast LC–MS/MS determination of lidocaine and MEGX in plasma for therapeutic drug monitoring in neonates with seizures. J Chromatogr B 881–882:111–114

    Article  Google Scholar 

  27. Abbara C, Bardot I, Cailleux A, Lallement G, Le Bouil A, Turcant A, Clair P, Diquet B (2008) High-performance liquid chromatography coupled with electrospray tandem mass spectrometry (LC/MS/MS) method for the simultaneous determination of diazepam, atropine and pralidoxime in human plasma. J Chromatogr B 874(1–2):42–50

    Article  CAS  Google Scholar 

  28. Kadam RS, Kompella UB (2009) Cassette analysis of eight beta-blockers in bovine eye sclera, choroid–RPE, retina, and vitreous by liquid chromatography–tandem mass spectrometry. J Chromatogr B 877(3):253–260

    Article  CAS  Google Scholar 

  29. Kaklamanos G, Theodoridis G, Dabalis T (2009) Determination of anabolic steroids in muscle tissue by liquid chromatography–tandem mass spectrometry. J Chromatogr A 1216(46):8072–8079

    Article  CAS  Google Scholar 

  30. Ionita IA, Fast DM, Akhlaghi F (2009) Development of a sensitive and selective method for the quantitative analysis of cortisol, cortisone, prednisolone and prednisone in human plasma. J Chromatogr B 877(8–9):765–772

    Article  CAS  Google Scholar 

  31. Stanley SMR, Foo HC (2006) Screening for basic drugs in equine urine using direct-injection differential-gradient LC–LC coupled to hybrid tandem MS/MS. J Chromatogr B 836(1–2):1–14

    Article  CAS  Google Scholar 

  32. Zhang S-Q (2011) Quantification of triamcinolone acetonide in ocular tissues after intravitreal injection to rabbit using liquid chromatography–tandem mass spectrometry. J Chromatogr B 879(7–8):548–552

    Article  CAS  Google Scholar 

  33. Yu P, Yang G, Tan H, Cheng Z, Song M, Gu Z, Li X (2011) Determination of pilocarpine in human plasma by LC–APCI–MS–MS and application to a pharmacokinetic study. Chromatographia 73(9–10):921–927

    Article  CAS  Google Scholar 

  34. Liu B, Ding L, Xu X, Lin H, Sun C, You L (2014) Ocular and systemic pharmacokinetics of lidocaine hydrochloride ophthalmic gel in rabbits after topical ocular administration. Eur J Drug Metab Pharmacokinet. doi:10.1007/s13318-014-0218-5

    Google Scholar 

  35. John H, Binder T, Höchstetter H, Thiermann H (2010) LC-ESI MS/MS quantification of atropine and six other antimuscarinic tropane alkaloids in plasma. Anal Bioanal Chem 396(2):751–763

    Article  CAS  Google Scholar 

  36. Earla R, Boddu SH, Cholkar K, Hariharan S, Jwala J, Mitra AK (2010) Development and validation of a fast and sensitive bioanalytical method for the quantitative determination of glucocorticoids–quantitative measurement of dexamethasone in rabbit ocular matrices by liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal 52(4):525–533

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Platform of Biopharmacy for sharing the LC–MS/MS system with us and providing internal standards. Also, we thank Martin Jutras for his clear advice through the method development and validation. This work is supported by the Canadian Research Chair Program (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Banquy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latreille, PL., Banquy, X. A simple method for the subnanomolar quantitation of seven ophthalmic drugs in the rabbit eye. Anal Bioanal Chem 407, 3567–3578 (2015). https://doi.org/10.1007/s00216-015-8574-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8574-9

Keywords

Navigation