Advertisement

Analytical and Bioanalytical Chemistry

, Volume 407, Issue 1, pp 23–58 | Cite as

Electromigrative separation techniques in forensic science: combining selectivity, sensitivity, and robustness

  • Tjorben Nils Posch
  • Michael Pütz
  • Nathalie Martin
  • Carolin HuhnEmail author
Review
Part of the following topical collections:
  1. ABC Highlights: authored by Rising Stars and Top Experts

Abstract

In this review we introduce the advantages and limitations of electromigrative separation techniques in forensic toxicology. We thus present a summary of illustrative studies and our own experience in the field together with established methods from the German Federal Criminal Police Office rather than a complete survey. We focus on the analytical aspects of analytes’ physicochemical characteristics (e.g. polarity, stereoisomers) and analytical challenges including matrix tolerance, separation from compounds present in large excess, sample volumes, and orthogonality. For these aspects we want to reveal the specific advantages over more traditional methods. Both detailed studies and profiling and screening studies are taken into account. Care was taken to nearly exclusively document well-validated methods outstanding for the analytical challenge discussed. Special attention was paid to aspects exclusive to electromigrative separation techniques, including the use of the mobility axis, the potential for on-site instrumentation, and the capillary format for immunoassays. The review concludes with an introductory guide to method development for different separation modes, presenting typical buffer systems as starting points for different analyte classes. The objective of this review is to provide an orientation for users in separation science considering using capillary electrophoresis in their laboratory in the future.

Keywords

Chiral separation Electrophoretic immunoassay MEKC CEC Drugs of abuse Capillary electrophoresis 

Notes

Acknowledgments

We thank the Helmholtz Initiative and Networking Fund for financial support. This article was funded within the program “Forschung für die zivile Sicherheit” of the Federal Ministry of Education and Research (BMBF; 13 N12012). C.H. also thanks the German Excellence Initiative commissioned by the German Research Foundation (DFG).

References

  1. 1.
    Favretto D, Pascali JP, Tagliaro F (2013) New challenges and innovation in forensic toxicology: focus on the ’New psychoactive substances'. J Chromatogr A 1287:84–95Google Scholar
  2. 2.
    Rosenbaum C, Carreiro S, Babu K (2012) Here today, gone tomorrow…and back again? A review of herbal marijuana alternatives (k2, spice), synthetic cathinones (bath salts), kratom, salvia divinorum, methoxetamine, and piperazines. J Med Toxicol 8(1):15–32Google Scholar
  3. 3.
    Theobald DS, Pütz M, Schneider E, Maurer HH (2006) New designer drug 4-iodo-2,5-dimethoxy-beta-phenethylamine (2C-I): studies on its metabolism and toxicological detection in rat urine using gas chromatographic/mass spectrometric and capillary electrophoretic/mass spectrometric techniques. J Mass Spectrom 41(7):872–886Google Scholar
  4. 4.
    Chee GL, Wan TSM (1993) Reproducible and high-speed separation of basic drugs by capillary zone electrophoresis. J Chromatogr B 612(1):172–177Google Scholar
  5. 5.
    Mohr S, Pilaj S, Schmid MG (2012) Chiral separation of cathinone derivatives used as recreational drugs by cyclodextrin-modified capillary electrophoresis. Electrophoresis 33(11):1624–1630Google Scholar
  6. 6.
    Weinberger R, Lurie IS (1991) Micellar electrokinetic capillary chromatography of illicit drug substances. Anal Chem 63(8):823–827Google Scholar
  7. 7.
    Iwamuro Y, Iio-Ishimaru R, Chinaka S, Takayama N, Kodama S, Hayakawa K (2010) Reproducible chiral capillary electrophoresis of methamphetamine and its related compounds using a chemically modified capillary having diol groups. Forensic Toxicol 28(1):19–24Google Scholar
  8. 8.
    Iio R, Chinaka S, Tanaka S, Takayamaa N, Hayakawab K (2003) Simultaneous chiral determination of methamphetamine and its metabolites in urine by capillary electrophoresis-mass spectrometry. Analyst 128:646–650Google Scholar
  9. 9.
    Iio R, Chinaka S, Takayama N, Hayakawa K (2005) Simultaneous chiral analysis of methamphetamine and related compounds by capillary electrophoresis/mass spectrometry using anionic cyclodextrin. Anal Sci 21(1):15–19Google Scholar
  10. 10.
    Iwata YT, Kanamori T, Ohmae Y, Tsujikawa K, Inoue H, Kishi T (2003) Chiral analysis of amphetamine-type stimulants using reversed-polarity capillary electrophoresis/positive ion electrospray ionization tandem mass spectrometry. Electrophoresis 24(11):1770–1776Google Scholar
  11. 11.
    Iio R, Chinaka S, Takayama N, Hayakawa K (2005) Simultaneous chiral analysis of methamphetamine and its metabolites by capillary electrophoresis/mass spectrometry with direct injection of urine. J Health Sci 51(6):693–701Google Scholar
  12. 12.
    Liotta E, Gottardo R, Seri C, Rimondo C, Miksik I, Serpelloni G, Tagliaro F (2012) Rapid analysis of caffeine in “smart drugs” and “energy drinks” by microemulsion electrokinetic chromatography (MEEKC). Forensic Sci Int 220(1–3):279–283Google Scholar
  13. 13.
    Lurie IS, Meyers RP, Conver TS (1998) Capillary electrochromatography of cannabinoids. Anal Chem 70(15):3255–3260Google Scholar
  14. 14.
    Ho Y-H, Wang C-C, Hsiao Y-T, Ko W-K, Wu S-M (2013) Analysis of ten abused drugs in urine by large volume sample stacking–sweeping capillary electrophoresis with an experimental design strategy. J Chromatogr A 1295:136–141Google Scholar
  15. 15.
    Rittgen J, Pütz M, Zimmermann R (2012) Identification of fentanyl derivatives at trace levels with nonaqueous capillary electrophoresis-electrospray-tandem mass spectrometry (MSn, n = 2, 3): Analytical method and forensic applications. Electrophoresis 33(11):1595–1605Google Scholar
  16. 16.
    Pütz M, Martin N Application of CE-ESI-MS in forensic toxicology: Identification of piperazine-derived designer drugs in Ecstasy tablets and of food colorants in illicit drugs. In: Pragst F, Aderjan R (eds) XV. GTFCh-Symposium 2007 Aktuelle Beiträge zur Forensischen und Klinischen Toxikologie, Bad Vibel, 2008. pp 487–501Google Scholar
  17. 17.
    Lurie IS, Hays PA, Parker K (2004) Capillary electrophoresis analysis of a wide variety of seized drugs using the same capillary with dynamic coatings. Electrophoresis 25(10–11):1580–1591Google Scholar
  18. 18.
    Lurie IS, Hays PA, Garcia AE, Panicker S (2004) Use of dynamically coated capillaries for the determination of heroin, basic impurities and adulterants with capillary electrophoresis. J Chromatogr A 1034(1–2):227–235Google Scholar
  19. 19.
    Wen T, Zhao X, Luo G, Wang J, Wang Y, Yao B, Zhao J, Zhu J, Yu Z (2007) Comparison of microemulsion electrokinetic chromatography and solvent modified micellar electrokinetic chromatography on rapid separation of heroin, amphetamine and their basic impurities. Talanta 71(2):854–860Google Scholar
  20. 20.
    Posch TN, Müller A, Schulz W, Pütz M, Huhn C (2012) Implementation of a design of experiments to study the influence of the background electrolyte on separation and detection in non-aqueous capillary electrophoresis–mass spectrometry. Electrophoresis 33(4):583–598Google Scholar
  21. 21.
    Lurie IS, Panicker S, Hays PA, Garcia AD, Geer BL (2003) Use of dynamically coated capillaries with added cyclodextrins for the analysis of opium using capillary electrophoresis. J Chromatogr A 984(1):109–120Google Scholar
  22. 22.
    Meng L, Wang B, Luo F, Shen G, Wang Z, Guo M (2011) Application of dispersive liquid–liquid microextraction and CE with UV detection for the chiral separation and determination of the multiple illicit drugs on forensic samples. Forensic Sci Int 209(1–3):42–47Google Scholar
  23. 23.
    Lim J-T, Zare RN, Bailey CG, Rakestraw DJ, Yan C (2000) Separation of related opiate compounds using capillary electrochromatography. Electrophoresis 21(4):737–742Google Scholar
  24. 24.
    Aturki Z, D’Orazio G, Rocco A, Bortolotti F, Gottardo R, Tagliaro F, Fanali S (2010) CEC-ESI ion trap MS of multiple drugs of abuse. Electrophoresis 31(7):1256–1263Google Scholar
  25. 25.
    Aturki Z, D’Orazio G, Fanali S, Rocco A, Bortolotti F, Gottardo R, Tagliaro F (2009) Capillary electrochromatographic separation of illicit drugs employing a cyano stationary phase. J Chromatogr A 1216(17):3652–3659Google Scholar
  26. 26.
    Kohler I, Schappler J, Rudaz S (2013) Highly sensitive capillary electrophoresis-mass spectrometry for rapid screening and accurate quantitation of drugs of abuse in urine. Anal Chim Acta 780:101–109Google Scholar
  27. 27.
    Wey AB, Zhang C-X, Thormann W (1999) Head-column field-amplified sample stacking in binary system capillary electrophoresis: preparation of extracts for determination of opioids in microliter amounts of body fluids. J Chromatogr A 853(1–2):95–106Google Scholar
  28. 28.
    Lurie IS, Jason Bethea M, McKibben TD, Hays PA, Pellegrini P, Sahai R, Garcia AD, Weinberger R (2001) Use of dynamically coated capillaries for the routine analysis of methamphetamine, amphetamine, MDA, MDMA, MDEA, and cocaine using capillary electrophoresis. J Forensic Sci 46(5):1025–1032Google Scholar
  29. 29.
    Unger M, Stöckigt D, Belder D, Stöckigt J (1997) General approach for the analysis of various alkaloid classes using capillary electrophoresis and capillary electrophoresis-mass spectrometry. J Chromatogr A 767(1–2):263–276Google Scholar
  30. 30.
    Posch TN, Martin N, Pütz M, Huhn C (2012) Nonaqueous capillary electrophoresis–mass spectrometry: a versatile, straightforward tool for the analysis of alkaloids from psychoactive plant extracts. Electrophoresis 33(11):1557–1566Google Scholar
  31. 31.
    Lurie IS, Conver TS, Ford VL (1998) Simultaneous separation of acidic, basic, and neutral organic compounds, including strong and moderate acids and bases, by capillary electrochromatography. Anal Chem 70(21):4563–4569Google Scholar
  32. 32.
    Tagliaro F, Bortolotti F (2006) Recent advances in the applications of CE to forensic sciences (2001–2004). Electrophoresis 27(1):231–243Google Scholar
  33. 33.
    Tagliaro F, Bortolotti F (2008) Recent advances in the applications of CE to forensic sciences (2005–2007). Electrophoresis 29(1):260–268Google Scholar
  34. 34.
    Tagliaro F, Pascali J, Fanigliulo A, Bortolotti F (2010) Recent advances in the application of CE to forensic sciences: a update over years 2007–2009. Electrophoresis 31(1):251–259Google Scholar
  35. 35.
    Pascali JP, Bortolotti F, Tagliaro F (2012) Recent advances in the application of CE to forensic sciences, an update over years 2009–2011. Electrophoresis 33(1):117–126Google Scholar
  36. 36.
    Riekkola M-L, Jönsson JÅ, Smith RM (2004) Terminology for analytical capillary electromigration techniques. Pure Appl Chem 76(2):443–451Google Scholar
  37. 37.
    Tagliaro F, Manetto G, Crivellente F, Smith FP (1998) A brief introduction to capillary electrophoresis. Forensic Sci Int 92(2–3):75–88Google Scholar
  38. 38.
    Lauer HH, Rozing G (eds) High Performance Capillary Electrophoresis - A Primer. Agilent TechnologiesGoogle Scholar
  39. 39.
    Engelhardt H, Beck W, Schmitt T, Gutnikov G (1996) Capillary electrophoresis: Methods and potentials. Vieweg, WiesbadenGoogle Scholar
  40. 40.
    Tagliaro F, Smith FP (1996) Forensic capillary electrophoresis. TrAC Trends Anal Chem 15(10):513–525Google Scholar
  41. 41.
    Tagliaro F, Bortolotti F, Pascali J (2007) Current role of capillary electrophoretic/electrokinetic techniques in forensic toxicology. Anal Bioanal Chem 388(7):1359–1364Google Scholar
  42. 42.
    Cruces-Blanco C, García-Campaña AM (2012) Capillary electrophoresis for the analysis of drugs of abuse in biological specimens of forensic interest. TrAC Trends Anal Chem 31:85–95Google Scholar
  43. 43.
    Smyth WF, Brooks P (2004) A critical evaluation of high performance liquid chromatography-electrospray ionisation-mass spectrometry and capillary electrophoresis- electrospray-mass spectrometry for the detection and determination of small molecules of significance in clinical and forensic science. Electrophoresis 25(10–11):1413–1446Google Scholar
  44. 44.
    Fanigliulo A, Bortolotti F, Pascali J, Tagliaro F (2008) Chapter 15 Forensic toxicological screening with capillary electrophoresis and related techniques. In: Bogusz MJ (ed) Handbook of analytical separations, vol 6. Elsevier Science B.V, Amsterdam, pp 513–534Google Scholar
  45. 45.
    Petersen JR, Okorodudu AO, Mohammad A, Payne DA (2003) Capillary electrophoresis and its application in the clinical laboratory. Clin Chim Acta 330(1–2):1–30Google Scholar
  46. 46.
    Smyth WF, McClean S (1998) A critical evaluation of the application of capillary electrophoresis to the detection and determination of 1,4-benzodiazepine tranquilizers in formulations and body materials. Electrophoresis 19(16–17):2870–2882Google Scholar
  47. 47.
    Smyth WF (2006) Recent applications of capillary electrophoresis-electrospray ionisation-mass spectrometry in drug analysis. Electrophoresis 27(11):2051–2062Google Scholar
  48. 48.
    Smyth WF (2005) Recent applications of capillary electrophoresis-electrospray ionisation-mass spectrometry in drug analysis. Electrophoresis 26(7–8):1334–1357Google Scholar
  49. 49.
    Northrop DM, McCord B, Butler JM (1994) Forensic applications of capillary electrophoresis. J Capillary Electrophor 001(2):158–168Google Scholar
  50. 50.
    Bjørnsdottir I, Tjørnelund J, Hansen SH (1998) Nonaqueous capillary electrophoresis - its applicability in the analysis of food, pharmaceuticals and biological fluids. Electrophoresis 19(12):2179–2186Google Scholar
  51. 51.
    Lurie IS (1998) Capillary electrophoresis of illicit drug seizures. Forensic Sci Int 92(2–3):125–136Google Scholar
  52. 52.
    von Heeren F, Thormann W (1997) Capillary electrophoresis in clinical and forensic analysis. Electrophoresis 18(12–13):2415–2426Google Scholar
  53. 53.
    Lemos NP, Bortolotti F, Manetto G, Anderson RA, Cittadini F, Tagliaro F (2001) Capillary electrophoresis: a new tool in forensic medicine and science. Sci Justice 41(3):203–210Google Scholar
  54. 54.
    Deyl Z, Mikik I, Tagliaro F (1998) Advances in capillary electrophoresis. Forensic Sci Int 92(2–3):89–124Google Scholar
  55. 55.
    Thormann W, Aebi Y, Lanz M, Caslavska J (1998) Capillary electrophoresis in clinical toxicology. Forensic Sci Int 92(2–3):157–183Google Scholar
  56. 56.
    Manetto G, Crivellente F, Tagliaro F (2000) Capillary electrophoresis: a new analytical tool for forensic toxicologists. Ther Drug Monit 22(1):84–88Google Scholar
  57. 57.
    Boone CM, Franke J-P, de Zeeuw RA, Ensing K (1999) Evaluation of capillary electrophoretic techniques towards systematic toxicological analysis. J Chromatogr A 838(1–2):259–272Google Scholar
  58. 58.
    Anastos N, Barnett NW, Lewis SW (2005) Capillary electrophoresis for forensic drug analysis: a review. Talanta 67(2):269–279Google Scholar
  59. 59.
    Cruces-Blanco C, Gámiz–Gracia L, García-Campaña AM (2007) Applications of capillary electrophoresis in forensic analytical chemistry. TrAC Trends Anal Chem 26(3):215–226Google Scholar
  60. 60.
    Thormann W, Molteni S, Caslavska J, Schmutz A (1994) Clinical and forensic applications of capillary electrophoresis. Electrophoresis 15(1):3–12Google Scholar
  61. 61.
    Thormann W, Caslavska J (1998) Capillary electrophoresis in drug analysis. Electrophoresis 19(16–17):2691–2694Google Scholar
  62. 62.
    Plaut O, Staub C (2002) Capillary electrophoresis in forensic toxicology. CHIMIA Int J Chem 56(3):96–100Google Scholar
  63. 63.
    Porras SP, Riekkola M-L, Kenndler E (2003) The principles of migration and dispersion in capillary zone electrophoresis in nonaqueous solvents. Electrophoresis 24(10):1485–1498Google Scholar
  64. 64.
    Porras SP, Riekkola M-L, Kenndler E (2001) Electrophoretic mobilities of cationic analytes in non-aqueous methanol, acetonitrile and their mixtures - influence of ionic strength and ion-pair formation. J Chromatogr A 924:31–42Google Scholar
  65. 65.
    Porras SP, Kenndler E (2004) Capillary zone electrophoresis in non-aqueous solutions: pH of the background electrolyte. J Chromatogr A 1037(1–2):455–465Google Scholar
  66. 66.
    Porras SP, Kenndler E (2005) Are the asserted advantages of organic solvents in capillary electrophoresis real? A critical discussion. Electrophoresis 26(17):3203–3220Google Scholar
  67. 67.
    Geiser L, Veuthey J-L (2009) Non-aqueous capillary electrophoresis 2005–2008. Electrophoresis 30(1):36–49Google Scholar
  68. 68.
    Riekkola M-L, Jussila M, Porras SP, Valko IE (2000) Non-aqueous capillary electrophoresis. J Chromatogr A 892(1–2):155–170Google Scholar
  69. 69.
    Szumski M, Buszewski B (2013) Non-aqueous capillary electrophoresis. In: Buszewski B, Dziubakiewicz E, Szumski M (eds) Electromigration techniques, vol 105, Springer series in chemical physics. Springer, Berlin-Heidelberg, pp 203–213Google Scholar
  70. 70.
    Bjørnsdottir I, HonoréHansen S (1995) Comparison of separation selectivity in aqueous and non-aqueous capillary electrophoresis. J Chromatogr A 711(2):313–322Google Scholar
  71. 71.
    Amini A (2001) Recent developments in chiral capillary electrophoresis and applications of this technique to pharmaceutical and biomedical analysis. Electrophoresis 22(15):3107–3130Google Scholar
  72. 72.
    Chankvetadze B (1997) Separation selectivity in chiral capillary electrophoresis with charged selectors. J Chromatogr A 792(1–2):269–295Google Scholar
  73. 73.
    Pyell U (2006) Electrokinetic chromatography: theory, instrumentation, and applications. John Wiley & Sons, ChichesterGoogle Scholar
  74. 74.
    Somsen GW, Mol R, de Jong GJ (2003) On-line micellar electrokinetic chromatography–mass spectrometry: feasibility of direct introduction of non-volatile buffer and surfactant into the electrospray interface. J Chromatogr A 1000(1–2):953–961Google Scholar
  75. 75.
    Watarai H (1991) Microemulsion capillary electrophoresis. Chem Lett 20(3):391–394Google Scholar
  76. 76.
    Marsh A, Altria K, Clark B (2007) Microemulsion electrokinetic chromatography. In: Electrokinetic chromatography. John Wiley & Sons, Ltd, Hoboken, pp 115–135Google Scholar
  77. 77.
    Yang H, Ding Y, Cao J, Li P (2013) Twenty-one years of microemulsion electrokinetic chromatography (1991–2012): a powerful analytical tool. Electrophoresis 34(9–10):1273–1294Google Scholar
  78. 78.
    Ryan R, Donegan S, Power J, McEvoy E, Altria K (2009) Recent advances in the methodology, optimisation and application of MEEKC. Electrophoresis 30(1):65–82Google Scholar
  79. 79.
    Altria KD, Mahuzier P-E, Clark BJ (2003) Background and operating parameters in microemulsion electrokinetic chromatography. Electrophoresis 24(3):315–324Google Scholar
  80. 80.
    Hansen SH, Sheribah ZA (2005) Comparison of CZE, MEKC, MEEKC and non-aqueous capillary electrophoresis for the determination of impurities in bromazepam. J Pharm Biomed Anal 39(1–2):322–327Google Scholar
  81. 81.
    Mistry K, Krull I, Grinberg N (2002) Capillary electrochromatography: an alternative to HPLC and CE. J Sep Sci 25(15–17):935–958Google Scholar
  82. 82.
    Bartle KD, Myers P (eds) (2001) Capillary electrochromatography. Royal Society of Chemistry, CambridgeGoogle Scholar
  83. 83.
    Deyl Z, Svec F (eds) (2001) Capillary electrochromatography, Journal of chromatography library. Elsevier, AmsterdamGoogle Scholar
  84. 84.
    Boček P (1981) Analytical isotachophoresis. In: Analytical Problems, vol 95, Topics in Current Chemistry. Springer, Berlin Heidelberg, pp 131–177Google Scholar
  85. 85.
    Bocek P (1988) Analytical isotachophoresis. Electrophoresis library. VCH Verl. Ges., WeinheimGoogle Scholar
  86. 86.
    Everaerts FM, Becker JL, Verheggen TPEM (1976) Isotachophoresis: theory, instrumentation, and applications, vol 6, Journal of chromatography library. Elsevier Scientific Pub. Co, AmsterdamGoogle Scholar
  87. 87.
    Danková M, Kaniansky D, Fanali S, Iványi F (1999) Capillary zone electrophoresis separations of enantiomers present in complex ionic matrices with on-line isotachophoretic sample pretreatment. J Chromatogr A 838(1–2):31–43Google Scholar
  88. 88.
    Tomás-Barberán FA (1995) Capillary electrophoresis: a new technique in the analysis of plant secondary metabolites. Phytochem Anal 6(4):177–192Google Scholar
  89. 89.
    Frost M, Köhler H (1998) Analysis of lysergic acid diethylamide: comparison of capillary electrophoresis with laser-induced fluorescence (CE-LIF) with conventional techniques. Forensic Sci Int 92(2–3):213–218Google Scholar
  90. 90.
    Huhn C, Pütz M, Martin N, Dahlenburg R, Pyell U (2005) Determination of tryptamine derivatives in illicit synthetic drugs by capillary electrophoresis and ultraviolet laser-induced fluorescence detection. Electrophoresis 26(12):2391–2401Google Scholar
  91. 91.
    Bishop SC, Lerch M, McCord BR (2007) Detection of nitrated benzodiazepines by indirect laser-induced fluorescence detection on a microfluidic device. J Chromatogr A 1154(1–2):481–484Google Scholar
  92. 92.
    Bailey CG, Wallenborg SR (2000) Indirect laser-induced fluorescence detection of explosive compounds using capillary electrochromatography and micellar electrokinetic chromatography. Electrophoresis 21(15):3081–3087Google Scholar
  93. 93.
    Melanson JE, Boulet CA, Lucy CA (2001) Indirect laser-induced fluorescence detection for capillary electrophoresis using a violet diode laser. Anal Chem 73(8):1809–1813Google Scholar
  94. 94.
    Wallenborg SR, Bailey CG (2000) Separation and detection of explosives on a microchip using micellar electrokinetic chromatography and indirect laser-induced fluorescence. Anal Chem 72(8):1872–1878Google Scholar
  95. 95.
    Páez X, Hernández L (2001) Biomedical applications of capillary electrophoresis with laser-induced fluorescence detection. Biopharm Drug Dispos 22(7–8):273–289Google Scholar
  96. 96.
    Swinney K, Bornhop DJ (2000) Detection in capillary electrophoresis. Electrophoresis 21(7):1239–1250Google Scholar
  97. 97.
    Zemann AJ, Schnell E, Volgger D, Bonn GK (1998) Contactless conductivity detection for capillary electrophoresis. Anal Chem 70(3):563–567Google Scholar
  98. 98.
    Vio L, Crétier G, Chartier F, Geertsen V, Gourgiotis A, Isnard H, Rocca J-L (2012) Separation and analysis of lanthanides by isotachophoresis coupled with inductively coupled plasma mass spectrometry. Talanta 99:586–593Google Scholar
  99. 99.
    Schmitt-Kopplin P, Frommberger M (2003) Capillary electrophoresis - mass spectrometry: 15 years of developments and applications. Electrophoresis 24(22–23):3837–3867Google Scholar
  100. 100.
    Reinhoud NJ, Schroder E, Tjaden UR, Niessen WMA, de Brauw MCTN, Van der Greef J (1990) Static and scanning array detection in capillary electrophoresis-mass spectrometry. J Chromatogr A 516(1):147–155Google Scholar
  101. 101.
    Verheij ER, Tjaden UR, Niessen WMA, Van der Greef J (1991) Pseudo-electrochromatography-mass spectrometry: a new alternative. J Chromatogr A 554(1–2):339–349Google Scholar
  102. 102.
    Chang SY, Yeung ES (1997) Laser vaporization/ionization interface for capillary electrophoresis-time-of-flight mass spectrometry. Anal Chem 69(13):2251–2257Google Scholar
  103. 103.
    Hirabayashi Y, Hirabayashi A, Koizumi H (1999) A sonic spray interface for capillary electrophoresis/mass spectrometry. Rapid Commun Mass Spectrom 13(8):712–715Google Scholar
  104. 104.
    Gusev AI (2000) Interfacing matrix-assisted laser desorption/ionization mass spectrometry with column and planar separations. Fresenius J Anal Chem 366(6–7):691–700Google Scholar
  105. 105.
    Musyimi Harrison K, Guy J, Narcisse Damien A, Soper Steven A, Murray Kermit K (2005) Direct coupling of polymer-based microchip electrophoresis to online MALDI-MS using a rotating ball inlet. Electrophoresis 26(24):4703–4710Google Scholar
  106. 106.
    Preisler J, Foret F, Karger BL (1998) On-Line MALDI-TOF MS using a continuous vacuum deposition interface. Anal Chem 70(24):5278–5287Google Scholar
  107. 107.
    Maxwell EJ, Chen DDY (2008) Twenty years of interface development for capillary electrophoresis–electrospray ionization–mass spectrometry. Anal Chim Acta 627(1):25–33Google Scholar
  108. 108.
    Whitt JT, Moini M (2003) Capillary electrophoresis to mass spectrometry interface using a porous junction. Anal Chem 75(9):2188–2191Google Scholar
  109. 109.
    Maxwell EJ, Zhong X, Zhang H, van Zeijl N, Chen DDY (2010) Decoupling CE and ESI for a more robust interface with MS. Electrophoresis 31(7):1130–1137Google Scholar
  110. 110.
    Schmitt-Kopplin P, Englmann M (2005) Capillary electrophoresis - mass spectrometry: survey on developments and applications 2003–2004. Electrophoresis 26(7–8):1209–1220Google Scholar
  111. 111.
    Scriba GKE (2007) Nonaqueous capillary electrophoresis-mass spectrometry. J Chromatogr A 1159(1–2):28–41Google Scholar
  112. 112.
    Av B, Nicholson G, Bayer E (2001) Recent advances in capillary electrophoresis/electrospray-mass spectrometry. Electrophoresis 22(7):1251–1266Google Scholar
  113. 113.
    Unger M, Stöckigt J (1997) Improved detection of alkaloids in crude extracts applying capillary electrophoresis with field amplified sample injection. J Chromatogr A 791(1–2):323–331Google Scholar
  114. 114.
    Bjørnsdottir I, Hansen SH (1995) Determination of opium alkaloids in crude opium using non-aqueous capillary electrophoresis. J Pharm Biomed Anal 13(12):1473–1481Google Scholar
  115. 115.
    Bjørnsdottir I, Hansen SH (1997) Comparison of aqueous and non-aqueous capillary electrophoresis for quantitative determination of morphine in pharmaceuticals. J Pharm Biomed Anal 15(8):1083–1089Google Scholar
  116. 116.
    Bjørnsdottir I, Hansen SH (1999) Fast separation of 16 seizure drug substances using non-aqueous capillary electrophoresis. J Biochem Bioph Methods 38(2):155–161Google Scholar
  117. 117.
    Bjørnsdottir I, Hansen SH (1995) Determination of opium alkaloids in opium by capillary electrophoresis. J Pharm Biomed Anal 13(4–5):687–693Google Scholar
  118. 118.
    Nielsen MKK, Johansen SS, Dalsgaard PW, Linnet K (2010) Simultaneous screening and quantification of 52 common pharmaceuticals and drugs of abuse in hair using UPLC–TOF-MS. Forensic Sci Int 196(1–3):85–92Google Scholar
  119. 119.
    Badawi N, Simonsen KW, Steentoft A, Bernhoft IM, Linnet K (2009) Simultaneous screening and quantification of 29 drugs of abuse in oral fluid by solid-phase extraction and ultraperformance LC-MS/MS. Clin Chem 55(11):2004–2018Google Scholar
  120. 120.
    Dresen S, Ferreirós N, Gnann H, Zimmermann R, Weinmann W (2010) Detection and identification of 700 drugs by multi-target screening with a 3200 Q TRAP LC-MS/MS system and library searching. Anal Bioanal Chem 396(7):2425–2434Google Scholar
  121. 121.
    Pyell U (2007) Theory of electrokinetic chromatography. In: Electrokinetic chromatography. John Wiley & Sons, Ltd, Hoboken, pp 1–31Google Scholar
  122. 122.
    Terabe S (1992) Selectivity manipulation in micellar electrokinetic chromatography. J Pharm Biomed Anal 10(10–12):705–715Google Scholar
  123. 123.
    Beckers JL, Boček P (2000) Sample stacking in capillary zone electrophoresis: principles, advantages and limitations. Electrophoresis 21(14):2747–2767Google Scholar
  124. 124.
    Malá Z, Křivánková L, Gebauer P, Boček P (2007) Contemporary sample stacking in CE: a sophisticated tool based on simple principles. Electrophoresis 28(1–2):243–253Google Scholar
  125. 125.
    Huhn C (2007) Optimierung von Probeninjektion und Trennung in der Kapillarelektrophorese, der micellaren elektrokinetischen Chromatographie und der Säulenkopplung Isotachophorese-Kapillarelektrophorese zur Analyse komplexer Proben in der forensischen Analytik. Philipps-Universität Marburg, Marburg an der LahnGoogle Scholar
  126. 126.
    Himes S, Concheiro M, Scheidweiler K, Huestis M (2014) Validation of a novel method to identify in utero ethanol exposure: simultaneous meconium extraction of fatty acid ethyl esters, ethyl glucuronide, and ethyl sulfate followed by LC-MS/MS quantification. Anal Bioanal Chem 406(7):1945–1955Google Scholar
  127. 127.
    Albermann ME, Musshoff F, Madea B (2012) A high-performance liquid chromatographic–tandem mass spectrometric method for the determination of ethyl glucuronide and ethyl sulfate in urine validated according to forensic guidelines. J Chromatogr Sci 50(1):51–56Google Scholar
  128. 128.
    Cherkaoui S, Bekkouche K, Christen P, Veuthey J-L (2001) Non-aqueous capillary electrophoresis with diode array and electrospray mass spectrometric detection for the analysis of selected steroidal alkaloids in plant extracts. J Chromatogr A 922(1–2):321–328Google Scholar
  129. 129.
    Huhn C, Pütz M, Holthausen I, Pyell U (2008) Separation of very hydrophobic analytes by micellar electrokinetic chromatography. Electrophoresis 29(2):526–537Google Scholar
  130. 130.
    Poole CF, Poole SK (1997) Interphase model for retention and selectivity in micellar electrokinetic chromatography. J Chromatogr A 792(1–2):89–104Google Scholar
  131. 131.
    Poole SK, Poole CF (1997) Characterization of surfactant selectivity in micellar electrokinetic chromatography. Analyst 122:267–274Google Scholar
  132. 132.
    Poole CF, Poole SK, Abraham MH (1998) Recommendations for the determination of selectivity in micellar electrokinetic chromatography. J Chromatogr A 798(1–2):207–222Google Scholar
  133. 133.
    Cherkaoui S, Mateus L, Christen P, Veuthey J (1999) Nonaqueous capillary electrophoresis for the analysis of selected tropane alkaloids in a plant extract. Chromatographia 49(1):54–60Google Scholar
  134. 134.
    Cherkaoui S, Varesio E, Christen P, Veuthey J-L (1998) Selectivity manipulation using nonaqueous capillary electrophoresis. Application to tropane alkaloids and amphetamine derivatives. Electrophoresis 19(16–17):2900–2906Google Scholar
  135. 135.
    Vindevogel J, Sandra P (1992) Introduction to micellar electrokinetic chromatography. Hüthig, HeidelbergGoogle Scholar
  136. 136.
    Lucangioli SE, Hermida LG, Tripodi VP, Rodríguez VG, López EE, Rouge PD, Carducci CN (2000) Analysis of cis–trans isomers and enantiomers of sertraline by cyclodextrin-modified micellar electrokinetic chromatography. J Chromatogr A 871(1–2):207–215Google Scholar
  137. 137.
    Huhn C, Pütz M, Pyell U (2008) Separation of very hydrophobic analytes by MEKC. II. Carbon number equivalents as analyte descriptors – influence of the composition of the separation electrolyte. Electrophoresis 29:567–575Google Scholar
  138. 138.
    Bjørnsdottir I, Hansen SH, Terabe S (1996) Chiral separation in non-aqueous media by capillary electrophoresis using the ion-pair principle. J Chromatogr A 745(1–2):37–44Google Scholar
  139. 139.
    Hansen SH, Bjørnsdottir I, Tjørnelund J (1997) Separation of cationic cis-trans (Z-E) isomers and diastereoisomers using non-aqueous capillary electrophoresis. J Chromatogr A 792(1–2):49–55Google Scholar
  140. 140.
    Iwata YT, Inoue H, Kuwayama K, Kanamori T, Tsujikawa K, Miyaguchi H, Kishi T (2006) Forensic application of chiral separation of amphetamine-type stimulants to impurity analysis of seized methamphetamine by capillary electrophoresis. Forensic Sci Int 161(2–3):92–96Google Scholar
  141. 141.
    Lee JS, Yang WK, Han EY, Lee SY, Park YH, Lim MA, Chung HS, Park JH (2007) Monitoring precursor chemicals of methamphetamine through enantiomer profiling. Forensic Sci Int 173(1):68–72Google Scholar
  142. 142.
    Inoue H, Iwata YT, Kuwayama K (2008) Characterization and profiling of methamphetamine seizures. J Health Sci 54(6):615–622Google Scholar
  143. 143.
    Fanali S (2000) Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors. J Chromatogr A 875(1–2):89–122Google Scholar
  144. 144.
    Zaugg S, Thormann W (2000) Enantioselective determination of drugs in body fluids by capillary electrophoresis. J Chromatogr A 875(1–2):27–41Google Scholar
  145. 145.
    Caslavska J, Thormann W (2011) Stereoselective determination of drugs and metabolites in body fluids, tissues and microsomal preparations by capillary electrophoresis (2000–2010). J Chromatogr A 1218(4):588–601Google Scholar
  146. 146.
    Fillet M, Servais A-C, Crommen J (2003) Effects of background electrolyte composition and addition of selectors on separation selectivity in nonaqueous capillary electrophoresis. Electrophoresis 24(10):1499–1507Google Scholar
  147. 147.
    Blanco M, Valverde I (2003) Choice of chiral selector for enantioseparation by capillary electrophoresis. TrAC Trends Anal Chem 22(7):428–439Google Scholar
  148. 148.
    Sabbah S, Süß F, Scriba GKE (2001) pH-dependence of complexation constants and complex mobility in capillary electrophoresis separations of dipeptide enantiomers. Electrophoresis 22(15):3163–3170Google Scholar
  149. 149.
    Sabbah S, Scriba GKE (2000) Influence of the structure of cyclodextrins and amino acid sequence of dipeptides and tripeptides on the pH-dependent reversal of the migration order in capillary electrophoresis. J Chromatogr A 894(1–2):267–272Google Scholar
  150. 150.
    Süß F, Poppitz W, de Griend CES-v, Scriba GKE (2001) Influence of the amino acid sequence and nature of the cyclodextrin on the separation of small peptide enantiomers by capillary electrophoresis using randomly substituted and single isomer sulfated and sulfonated cyclodextrins. Electrophoresis 22(12):2416–2423Google Scholar
  151. 151.
    Sidamonidze N, Süß F, Poppitz W, Scriba GKE (2001) Influence of the amino acid sequence and nature of the cyclodextrin on the separation of small peptide enantiomers by capillary electrophoresis using α-, β-, and γ-cyclodextrin and the corresponding hydroxypropyl derivatives. J Sep Sci 24(9):777–783Google Scholar
  152. 152.
    Loukas YL, Sabbah S, Scriba GKE (2001) Method development and validation for the chiral separation of peptides in the presence of cyclodextrins using capillary electrophoresis and experimental design. J Chromatogr A 931(1–2):141–152Google Scholar
  153. 153.
    Sabbah S, Scriba GKE (2001) Separation of dipeptide and tripeptide enantiomers in capillary electrophoresis using carboxymethyl-β-cyclodextrin and succinyl-β-cyclodextrin: influence of the amino acid sequence, nature of the cyclodextrin and pH. Electrophoresis 22(7):1385–1393Google Scholar
  154. 154.
    Süß F, Kahle C, Holzgrabe U, Scriba GKE (2002) Studies on the chiral recognition of peptide enantiomers by neutral and sulfated β-cyclodextrin and heptakis-(2,3-di-O-acetyl)-β-cyclodextrin using capillary electrophoresis and nuclear magnetic resonance. Electrophoresis 23(9):1301–1307Google Scholar
  155. 155.
    Rudaz S, Calleri E, Geiser L, Cherkaoui S, Prat J, Veuthey J-L (2003) Infinite enantiomeric resolution of basic compounds using highly sulfated cyclodextrin as chiral selector in capillary electrophoresis. Electrophoresis 24(15):2633–2641Google Scholar
  156. 156.
    Dieckmann S, Pütz M, Pyell U (2008) Enantiomeric identification of chiral drugs, adulterants and impurites by capillary electrophoresis-ESI-mass spectrometry (CE-ESI-MS). Paper presented at the XVI. Symposium der GTFCh, MosbachGoogle Scholar
  157. 157.
    Cherkaoui S, Rudaz S, Varesio E, Veuthey J-L (2001) On-line capillary electrophoresis-electrospray mass spectrometry for the stereoselective analysis of drugs and metabolites. Electrophoresis 22(15):3308–3315Google Scholar
  158. 158.
    Jung B, Caslavska J, Thormann W (2009) Determination of ethyl glucuronide in human serum by capillary zone electrophoresis and an immunoassay. J Sep Sci 32(20):3497–3506Google Scholar
  159. 159.
    Schmitt T, Engelhardt H (1995) Optimization of enantiomeric separations in capillary electrophoresis by reversal of the migration order and using different derivatized cyclodextrins. J Chromatogr A 697(1–2):561–570Google Scholar
  160. 160.
    Caslavska J, Jung B, Thormann W (2011) Confirmation analysis of ethyl glucuronide and ethyl sulfate in human serum and urine by CZE-ESI-MSn after intake of alcoholic beverages. Electrophoresis 32(13):1760–1764Google Scholar
  161. 161.
    Iwata YT, Garcia A, Kanamori T, Inoue H, Kishi T, Lurie IS (2002) The use of a highly sulfated cyclodextrin for the simultaneous chiral separation of amphetamine-type stimulants by capillary electrophoresis. Electrophoresis 23(9):1328–1334Google Scholar
  162. 162.
    Dahlén J, von Eckardstein S (2006) Development of a capillary zone electrophoresis method including a factorial design and simplex optimisation for analysis of amphetamine, amphetamine analogues, cocaine, and heroin. Forensic Sci Int 157(2–3):93–105Google Scholar
  163. 163.
    Varesio E, Gauvrit JY, Longeray R, Lantéri P, Veuthey JL (1999) Optimization of fast CE analyses of ecstasy derivatives by use of experimental designs. Chromatographia 50(3–4):195–201Google Scholar
  164. 164.
    Tagliaro F, Antonioli C, Moretto S, Archetti S, Ghielmi S, Marigo M (1993) High-sensitivity low-cost methods for determination of cocaine in hair: high-performance liquid chromatography and capillary electrophoresis. Forensic Sci Int 63(1–3):227–238Google Scholar
  165. 165.
    Weinmann W, Schaefer P, Thierauf A, Schreiber A, Wurst FM (2004) Confirmatory analysis of ethylglucuronide in urine by liquid-chromatography/electrospray ionization/tandem mass spectrometry according to forensic guidelines. J Am Soc Mass Spectrom 15(2):188–193Google Scholar
  166. 166.
    Jung B, Caslavska J, Thormann W (2008) Determination of ethyl sulfate in human serum and urine by capillary zone electrophoresis. J Chromatogr A 1206(1):26–32Google Scholar
  167. 167.
    Krivankova L, Caslavska J, Malaskova H, Gebauer P, Thormann W (2005) Analysis of ethyl glucuronide in human serum by capillary electrophoresis with sample self-stacking and indirect detection. J Chromatogr A 1081(1):2–8Google Scholar
  168. 168.
    Nováková M, Křivánková L (2008) Determination of ethyl glucuronide in human serum by hyphenation of capillary isotachophoresis and zone electrophoresis. Electrophoresis 29(8):1694–1700Google Scholar
  169. 169.
    Tagliaro F, Manetto G, Crivellente F, Scarcella D, Marigo M (1998) Hair analysis for abused drugs by capillary zone electrophoresis with field-amplified sample stacking. Forensic Sci Int 92(2–3):201–211Google Scholar
  170. 170.
    Zhang C-X, Thormann W (1996) Head-column field-amplified sample stacking in binary system capillary electrophoresis: a robust approach providing over 1000-fold sensitivity enhancement. Anal Chem 68(15):2523–2532Google Scholar
  171. 171.
    Zhang C-X, Thormann W (1998) Head-column field-amplified sample stacking in binary system capillary electrophoresis. 2. Optimization with a preinjection plug and application to micellar electrokinetic chromatography. Anal Chem 70(3):540–548Google Scholar
  172. 172.
    Gottardo R, Bortolotti F, De Paoli G, Pascali JP, Miksik I, Tagliaro F (2007) Hair analysis for illicit drugs by using capillary zone electrophoresis-electrospray ionization-ion trap mass spectrometry. J Chromatogr A 1159(1–2):185–189Google Scholar
  173. 173.
    Guzman NA, Blanc T, Phillips TM (2008) Immunoaffinity capillary electrophoresis as a powerful strategy for the quantification of low-abundance biomarkers, drugs, and metabolites in biological matrices. Electrophoresis 29(16):3259–3278Google Scholar
  174. 174.
    Thormann W, Lanz M, Caslavska J, Siegenthaler P, Portmann R (1998) Screening for urinary methadone by capillary electrophoretic immunoassays and confirmation by capillary electrophoresis-mass spectrometry. Electrophoresis 19(1):57–65Google Scholar
  175. 175.
    Lanz M, Thormann W (1996) Characterization of the stereoselective metabolism of methadone and its primary metabolite via cyclodextrin capillary electrophoretic determination of their urinary enantiomers. Electrophoresis 17(12):1945–1949Google Scholar
  176. 176.
    Bao J, Regnier FE (1992) Ultramicro enzyme assays in a capillary electrophoretic system. J Chromatogr A 608(1–2):217–224Google Scholar
  177. 177.
    Wey AB, Caslavska J, Thormann W (2000) Analysis of codeine, dihydrocodeine and their glucuronides in human urine by electrokinetic capillary immunoassays and capillary electrophoresis-ion trap mass spectrometry. J Chromatogr A 895(1–2):133–146Google Scholar
  178. 178.
    Wey AB, Thormann W (2001) Capillary electrophoresis-electrospray ionization ion trap mass spectrometry for analysis and confirmation testing of morphine and related compounds in urine. J Chromatogr A 916(1–2):225–238Google Scholar
  179. 179.
    W-R- B, Perez SB, El-Khadra-Kluth N, Fritsch R, Hindorf G, Jacobsen-Bauer A, Klein B, Naujoks E, Standke U, Stein K, Westphal F, Zerell U (2012) Richtlinie zur qualitätssicherung bei forensisch-chemischen untersuchungen von betäubungs- und arzneimitteln. Toxichem Krimtech 79(3):42Google Scholar
  180. 180.
    Castaneda Penalvo G, Julien E, Fabre H (1996) Cross validation of capillary electrophoresis and high-performance liquid chromatography for cefotaxime and related impurities. Chromatographia 42(3–4):159–164Google Scholar
  181. 181.
    Sadeghipour F, Varesio E, Giroud C, Rivier L, Veuthey JL (1997) Analysis of amphetamines by capillary electrophoresis and liquid chromatography: application to drug seizures and cross-validation. Forensic Sci Int 86(1–2):1–13Google Scholar
  182. 182.
    Tagliaro F, Smith FP, Turrina S, Equisetto V, Marigo M (1996) Complementary use of capillary zone electrophoresis and micellar electrokinetic capillary chromatography for mutual confirmation of results in forensic drug analysis. J Chromatogr A 735(1–2):227–235Google Scholar
  183. 183.
    Schmitt-Kopplin P, Garmash AV, Kudryavtsev AV, Menzinger F, Perminova IV, Hertkorn N, Freitag D, Petrosyan VS, Kettrup A (2001) Quantitative and qualitative precision improvements by effective mobility-scale data transformation in capillary electrophoresis analysis. Electrophoresis 22(1):77–87Google Scholar
  184. 184.
    Schmitt-Kopplin P, Fekete A (2008) The CE way of thinking. In: Schmitt-Kopplin P (ed) Capillary electrophoresis, vol 384, Methods in molecular biology. Humana Press, Totowa, pp 611–629Google Scholar
  185. 185.
    Nevedomskaya E, Derks R, Deelder A, Mayboroda O, Palmblad M (2009) Alignment of capillary electrophoresis–mass spectrometry datasets using accurate mass information. Anal Bioanal Chem 395(8):2527–2533Google Scholar
  186. 186.
    Lewis AP, Cranny A, Harris NR, Green NG, Wharton JA, Wood RJK, Stokes KR (2013) Review on the development of truly portable and in-situ capillary electrophoresis systems. Meas Sci Technol 24(4):042001Google Scholar
  187. 187.
    Wallenborg SR, Lurie IS, Arnold DW, Bailey CG (2000) On-chip chiral and achiral separation of amphetamine and related compounds labeled with 4-fluoro-7-nitrobenzofurazane. Electrophoresis 21(15):3257–3263Google Scholar
  188. 188.
    Fernández-la-Villa A, Sánchez-Barragán D, Pozo-Ayuso DF, Castaño-Álvarez M (2012) Smart portable electrophoresis instrument based on multipurpose microfluidic chips with electrochemical detection. Electrophoresis 33(17):2733–2742Google Scholar
  189. 189.
    da Costa ET, Neves CA, Hotta GM, Vidal DTR, Barros MF, Ayon AA, Garcia CD, do Lago CL (2012) Unmanned platform for long-range remote analysis of volatile compounds in air samples. Electrophoresis 33(17):2650–2659Google Scholar
  190. 190.
    Blanco GA, Nai YH, Hilder EF, Shellie RA, Dicinoski GW, Haddad PR, Breadmore MC (2011) Identification of inorganic improvised explosive devices using sequential injection capillary electrophoresis and contactless conductivity detection. Anal Chem 83(23):9068–9075Google Scholar
  191. 191.
    Sarazin C, Delaunay N, Varenne A, Vial J, Costanza C, Eudes V, Minet J-J, Gareil P (2010) Identification and determination of inorganic anions in real extracts from pre- and post-blast residues by capillary electrophoresis. J Chromatogr A 1217(44):6971–6978Google Scholar
  192. 192.
    Sarazin C, Delaunay N, Costanza C, Eudes V, Gareil P (2013) On the use of capillary electrophoresis for the determination of inorganic anions and cations, and carbohydrates in residues collected after a simulated suicide bombing attack. Talanta 103:301–305Google Scholar
  193. 193.
    Kobrin E-G, Lees H, Fomitšenko M, Kubáň P, Kaljurand M (2014) Fingerprinting postblast explosive residues by portable capillary electrophoresis with contactless conductivity detection. Electrophoresis 35(8):1165–1172Google Scholar
  194. 194.
    Manetto G, Tagliaro F, Crivellente F, Pascali VL, Marigo M (2000) Field-amplified sample stacking - capillary zone electrophoresis applied to the analysis of opiate drugs in hair. Electrophoresis 21(14):2891–2898Google Scholar
  195. 195.
    Foret F, Thompson TJ, Vouros P, Karger BL, Gebauer P, Bocek P (1994) Liquid sheath effects on the separation of proteins in capillary electrophoresis/electrospray mass spectrometry. Anal Chem 66(24):4450–4458Google Scholar
  196. 196.
    Huhn C, Pyell U (2008) Separation of very hydrophobic analytes by micellar electrokinetic chromatography: IV. Modeling of the effective electrophoretic mobility from carbon number equivalents and octanol-water partition coefficients. J Chromatogr A 1198–1199:208–214Google Scholar
  197. 197.
    Reijenga JC, Verheggen TPEM, Martens JHPA, Everaerts FM (1996) Buffer capacity, ionic strength and heat dissipation in capillary electrophoresis. J Chromatogr A 744(1–2):147–153Google Scholar
  198. 198.
    Huhn C, Ramautar R, Wuhrer M, Somsen GW (2010) Relevance and use of capillary coatings in capillary electrophoresis–mass spectrometry. Anal Bioanal Chem 396:297–314Google Scholar
  199. 199.
    Kenndler E (1998) Dependence of analyte separation on electroosmotic flow in capillary zone electrophoresis: quantitative description by the reduced mobility. J Microcolumn Sep 10(3):273–279Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tjorben Nils Posch
    • 1
  • Michael Pütz
    • 2
  • Nathalie Martin
    • 2
  • Carolin Huhn
    • 1
    • 3
    Email author
  1. 1.Forschungszentrum Jülich GmbHCentral Institute for Engineering, Electronics and Analytics, Analytics ZEA-3JülichGermany
  2. 2.Bundeskriminalamt – Federal Criminal Police OfficeForensic Science InstituteWiesbadenGermany
  3. 3.Institute of Physical and Theoretical ChemistryEberhard Karls Universität TübingenTübingenGermany

Personalised recommendations