Skip to main content

Advertisement

Log in

X-ray microfluorescence (μXRF) imaging of Aspergillus nidulans cell wall mutants reveals biochemical changes due to gene deletions

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We used synchrotron X-ray fluorescence to create the first semiquantitative, submicron resolution, element distribution maps of P, S, K, and Ca, in situ, in fungal samples. Data collection was performed at the European Synchrotron Radiation Facility beam line ID21, Grenoble, France. We studied developing hyphae, septa, and conidiophores in Aspergillus nidulans, comparing wild type and two cell wall biosynthesis gene deletion strains. The latter encode sequential enzymes for biosynthesis of galactofuranose, a minor wall carbohydrate. Each gene deletion caused hyphal morphogenesis defects, and reduced both colony growth and sporulation 500-fold. Elemental imaging has helped elucidate biochemical changes in the phenotype induced by the gene deletions that were not apparent from morphological examination. Here, we examined S as a proxy for protein content, P for nucleic acid content, as well as Ca and K, which also have important metabolic roles. Element distributions in wild-type fungi reflect biological aspects already known or expected from other types of analysis; however, the application of X-ray fluorescence (XRF) imaging reveals aspects of gene deletion phenotypes that were not previously available. We have demonstrated that deleting a dispensable gene involved in galactose metabolism (ugeA) and one involved in biosynthesis of a minor cell wall component (ugmA) led to changes in hyphal elemental distribution that may have resulted from compromised wall composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McCormick A, Loeffler J, Ebel F (2010) Aspergillus fumigatus: contours of an opportunistic human pathogen. Cell Microbiol 12:1535–1543

    Article  CAS  Google Scholar 

  2. Yu J (2010) Regulation of development in Aspergillus nidulans and Aspergillus fumigatus. Mycobiol 38:229–237

    Article  CAS  Google Scholar 

  3. Latgé JP (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290

    Article  CAS  Google Scholar 

  4. Pederson LL, Turco SJ (2003) Galactofuranose metabolism: a potential target for antimicrobial chemotherapy. Cell Mol Life Sci 60:259–266

    Article  Google Scholar 

  5. Aimanianda V, Latgé JP (2010) Problems and hopes in the development of drugs targeting the fungal cell wall. Expert Rev Anti Infect Ther 8:359–364

    Article  CAS  Google Scholar 

  6. El-Ganiny AM, Sanders DAR, Kaminskyj SGW (2008) Aspergillus nidulans UDP-galactopyranose mutase, encoded by ugmA plays key roles in colony growth, hyphal morphogenesis, and conidiation. Fungal Genet Biol 45:1533–1542

    Article  CAS  Google Scholar 

  7. El-Ganiny AM, Sheoran I, Sanders DAR, Kaminskyj SGW (2010) Aspergillus nidulans UDP-glucose-4-epimerase UgeA has multiple roles in wall architecture, hyphal morphogenesis, and asexual development. Fungal Genet Biol 47:629–635

    Article  CAS  Google Scholar 

  8. Alam MK, El-Ganiny AM, Afroz S, Sanders DAR, Liu J, Kaminskyj SGW (2012) Aspergillus nidulans galactofuranose biosynthesis affects antifungal drug sensitivity. Fungal Genet Biol 49:1033–1043

    Article  CAS  Google Scholar 

  9. Alam MK, Kaminskyj SGW (2013) Aspergillus galactose metabolism is more complex than that of Saccharomyces: the story of GalDGAL7 and GalEGAL1. Botany 91:467–477

    Article  CAS  Google Scholar 

  10. Szeghalmi A, Kaminskyj SGW, Gough KM (2007) A synchrotron FTIR microspectroscopy investigation of fungal hyphae grown under optimal and stressed conditions. Anal Bioanal Chem 387:1779–1789

    Article  CAS  Google Scholar 

  11. Jilkine K, Gough KM, Julian R, Kaminskyj SGW (2008) A sensitive method for examining whole-cell biochemical composition in single cells of filamentous fungi using synchrotron FTIR spectromicroscopy. J Inorg Biochem 102:540–546

    Article  CAS  Google Scholar 

  12. Kaminskyj SGW, Jilkine K, Szeghalmi A, Gough KM (2008) High spatial resolution analysis of fungal cell biochemistry: bridging the analytical gap using synchrotron FTIR spectromicroscopy. FEMS Microbiol Lett 284:1–8

    Article  CAS  Google Scholar 

  13. Isenor M, Kaminskyj SGW, Rodriguez RJ, Redman RS, Gough KM (2010) Characterization of mannitol in Curvularia protuberata hyphae by FTIR and Raman spectromicroscopy. Analyst 135:3249–3254

    Article  CAS  Google Scholar 

  14. Prusinkiewicz MA, Farazkhorasani F, Dynes JJ, Wang J, Gough KM, Kaminskyj SGW (2012) Proof-of-principle for SERS imaging of Aspergillus nidulans hyphae using in vivo synthesis of gold nanoparticles. Analyst 137:4934–4942

    Article  CAS  Google Scholar 

  15. Cotte M, Welcomme E, Solé VA, Salomé M, Menu M, Walter P, Susini J (2007) Synchrotron-based X-ray spectromicroscopy used for the study of an atypical micrometric pigment in 16th century paintings. Anal Chem 79:6988–6994

    Article  CAS  Google Scholar 

  16. Ducic T, Quintes S, Nave KA, Susini J, Rak M, Tucoulou R, Alevra M, Guttman P, Salditt T (2011) Structure and composition of myelinated axons: a multimodal synchrotron spectro-microscopy study. J Struct Biol 173:202–212

    Article  CAS  Google Scholar 

  17. Delfino R, Altissimo M, Menk RH, Alberti R, Klatka T, Frizzi T, Longoni A, Salome M, Tromba G, Arfelli F, Clai M, Vaccari L, Lorusso V, Tiribelli C, Pascolo L (2011) X-ray fluorescence elemental mapping and microscopy to follow hepatic disposition of a Gd-based magnetic resonance imaging contrast agent. Clin Exp Pharmacol Physiol 38:834–845

    Article  CAS  Google Scholar 

  18. Donner E, Punshon T, Guerinot ML, Lombi E (2012) Functional characterization of metal (loid) processes in planta through the integration of synchrotron techniques and plant molecular biology. Anal Bioanal Chem 402:3287–3298

    Article  CAS  Google Scholar 

  19. Bohic S, Cotte M, Salomé M, Fayard B, Kuehbacher M, Cloetens P, Martinez-Criado G, Tucoulou R, Susini J (2012) Biomedical applications of the ESRF synchrotron-based microspectroscopy platform. J Struct Biol 177:248–258

    Article  CAS  Google Scholar 

  20. Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, Diaz BC, Peralta-Videa JR, Gardea-Torresdey JL (2012) Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol 46:7637–7643

    Article  CAS  Google Scholar 

  21. Yun W, Pratt ST, Miller RM, Cai Z, Hunter DB, Jarstfer AG, Kemner KM, Lai B, Lee HR, Legnini DG, Rodrigues W, Smith CI (1998) X-ray imaging and microspectroscopy of plants and fungi. J Synchrotron Rad 5:1390–1395

    Article  CAS  Google Scholar 

  22. Gough KM, Kaminskyj SGW (2010) In: Srinivasan G (ed) Vibrational spectroscopic imaging for biomedical applications. New York, McGraw Hill

    Google Scholar 

  23. Solé VA, Papillon E, Cotte M, Walter P, Susini J (2007) A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta, Part B 62:63–68

    Article  CAS  Google Scholar 

  24. Habraken FHPM, Kuiper AET, Oostrom AV, Tamminga Y, Theeten JB (1982) Characterization of low-pressure chemical-vapor-deposited and thermally grown silicon nitride films. J Appl Phys 53:404–415

    Article  CAS  Google Scholar 

  25. Bartnicki-Garcia S (2002) In: Osiewacz HD (ed) Molecular biology of fungal development. New York, Marcel Dekker

    Google Scholar 

  26. Ma H, Snook LA, Kaminskyj SGW, Dahms TES (2005) Surface ultrastructure and elasticity in growing tips and mature regions of Aspergillus hyphae describe wall maturation. Microbiology 151:3679–3688

    Article  CAS  Google Scholar 

  27. Janssens K, De Nolf W, Van Der Snickt G, Vincze L, Vekemans B, Terzano R, Brenker FE (2010) Recent trends in quantitative aspects of microscopic X-ray fluorescence analysis. Trends Anal Chem 29:464–478

    Article  CAS  Google Scholar 

  28. Levina NN, Lew RR (2006) The role of tip-localized mitochondria in hyphal growth. Fungal Genet Biol 43:65–74

    Article  CAS  Google Scholar 

  29. Paul BC, El-Ganiny AM, Abbas M, Kaminskyj SGW, Dahms TES (2001) Quantifying the importance of galactofuranose in Aspergillus nidulans hyphal wall surface organization by atomic force microscopy. Eukaryotic Cell 10:646–653

    Article  CAS  Google Scholar 

  30. Alam MK, van Straaten KE, Sanders DAR, Kaminskyj SGW (2014) Aspergillus nidulans cell wall composition and function change in response to hosting several Aspergillus fumigatus UDP-galactopyranose mutase activity mutants. PLoS ONE 9(1):e85735

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank the ESRF for access to beamline ID21. We are pleased to acknowledge the Natural Sciences and Engineering Research Council of Canada for individual Discovery Grants to KMG and to SGWK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen M. Gough.

Additional information

Susan G.W. Kaminskyj and Kathleen M. Gough contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 190 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rak, M., Salome, M., Kaminskyj, S.G.W. et al. X-ray microfluorescence (μXRF) imaging of Aspergillus nidulans cell wall mutants reveals biochemical changes due to gene deletions. Anal Bioanal Chem 406, 2809–2816 (2014). https://doi.org/10.1007/s00216-014-7726-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7726-7

Keywords

Navigation