Skip to main content
Log in

A mass spectrometry-based workflow for the proteomic analysis of in vitro cultured cell subsets isolated by means of laser capture microdissection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper describes a microproteomic workflow that is useful for simultaneously identifying and quantifying proteins from a minimal number of morphotypically heterogeneous cultured adherent cells. The analytical strategy makes use of laser capture microdissection, an effective means of harvesting pure cell populations, and label-free mass spectrometry. We optimised the workflow with particular reference to cell fixation which is crucial for successful laser-based microdissection and also downstream molecular studies. In addition, we defined the minimum number of cells to be isolated and analysed for satisfactory proteome coverage. To set up this workflow, we choose human monocyte-derived macrophages spontaneously differentiated in vitro. These cells, under our culture conditions, show distinct morphotypes, reminiscent of the heterogeneity observed in tissues in various homeostatic and pathological states, e.g. atherosclerosis. This optimised workflow may provide new insights into biology and pathology of heterogeneous cell in culture, particularly when other cell selection approaches are not suitable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Teruel MN, Meyer T (2002) Parallel single-cell monitoring of receptor-triggered membrane translocation of a calcium-sensing protein module. Science 295(5561):1910–1912

    Article  CAS  Google Scholar 

  2. Kurimoto K, Yabuta Y, Ohinata Y, Saitou M (2007) Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis. Nat Protoc 2(3):739–752

    Article  CAS  Google Scholar 

  3. Gutstein HB, Morris JS, Annangudi SP, Sweedler JV (2008) Microproteomics: analysis of protein diversity in small samples. Mass Spectrom Rev 27(4):316–330

    Article  CAS  Google Scholar 

  4. Mustafa D, Kros JM, Luider T (2008) Combining laser capture microdissection and proteomics techniques. Methods Mol Biol 428:159–178

    Article  CAS  Google Scholar 

  5. Zhou G, Li H, DeCamp D, Chen S, Shu H, Gong Y, Flaig M, Gillespie JW, Hu N, Taylor PR, Emmert-Buck MR, Liotta LA, Petricoin EF 3rd, Zhao Y (2002) 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol Cell Proteomics 1(2):117–124

    Article  CAS  Google Scholar 

  6. Jain KK (2002) Recent advances in oncoproteomics. Curr Opin Mol Ther 4(3):203–209

    CAS  Google Scholar 

  7. Palmer-Toy DE, Sarracino DA, Sgroi D, LeVangie R, Leopold PE (2000) Direct acquisition of matrix-assisted laser desorption/ionization time-of-flight mass spectra from laser capture microdissected tissues. Clin Chem 46(9):1513–1516

    CAS  Google Scholar 

  8. Shapiro JP, Biswas S, Merchant AS, Satoskar A, Taslim C, Lin S, Rovin BH, Sen CK, Roy S, Freitas MA (2012) A quantitative proteomic workflow for characterization of frozen clinical biopsies: laser capture microdissection coupled with label-free mass spectrometry. J Proteome 77:433–440

    Article  CAS  Google Scholar 

  9. Liu NQ, Braakman RB, Stingl C, Luider TM, Martens JW, Foekens JA, Umar A (2012) Proteomics pipeline for biomarker discovery of laser capture microdissected breast cancer tissue. J Mammary Gland Biol Neoplasia 17(2):155–164

    Article  Google Scholar 

  10. Wiener MC, Sachs JR, Deyanova EG, Yates NA (2004) Differential mass spectrometry: a label-free LC-MS method for finding significant differences in complex peptide and protein mixtures. Anal Chem 76(20):6085–6096

    Article  CAS  Google Scholar 

  11. Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4(10):1487–1502

    Article  CAS  Google Scholar 

  12. Silva JC, Denny R, Dorschel CA, Gorenstein M, Kass IJ, Li GZ, McKenna T, Nold MJ, Richardson K, Young P, Geromanos S (2005) Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem 77(7):2187–2200

    Article  CAS  Google Scholar 

  13. Eligini S, Crisci M, Bono E, Songia P, Tremoli E, Colombo GI, Colli S (2013) Human monocyte-derived macrophages spontaneously differentiated in vitro show distinct phenotypes. J Cell Physiol 228(7):1464–1472

    Article  CAS  Google Scholar 

  14. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11(11):723–737

    Article  CAS  Google Scholar 

  15. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  16. Bagnato C, Thumar J, Mayya V, Hwang SI, Zebroski H, Claffey KP, Haudenschild C, Eng JK, Lundgren DH, Han DK (2007) Proteomics analysis of human coronary atherosclerotic plaque: a feasibility study of direct tissue proteomics by liquid chromatography and tandem mass spectrometry. Mol Cell Proteomics 6(6):1088–1102

    Article  CAS  Google Scholar 

  17. Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ (2006) Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 5(1):144–156

    Article  CAS  Google Scholar 

  18. Li GZ, Vissers JP, Silva JC, Golick D, Gorenstein MV, Geromanos SJ (2009) Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 9(6):1696–1719

    Article  CAS  Google Scholar 

  19. Geromanos SJ, Vissers JP, Silva JC, Dorschel CA, Li GZ, Gorenstein MV, Bateman RH, Langridge JI (2009) The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics 9(6):1683–1695

    Article  CAS  Google Scholar 

  20. Brioschi M, Lento S, Tremoli E, Banfi C (2013) Proteomic analysis of endothelial cell secretome: a means of studying the pleiotropic effects of Hmg-CoA reductase inhibitors. J Proteome 78:346–361

    Article  CAS  Google Scholar 

  21. Levin Y, Hradetzky E, Bahn S (2011) Quantification of proteins using data-independent analysis (MSE) in simple and complex samples: a systematic evaluation. Proteomics 11(16):3273–3287

    Article  CAS  Google Scholar 

  22. Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S (2009) AmiGO: online access to ontology and annotation data. Bioinformatics 25(2):288–289

    Article  CAS  Google Scholar 

  23. Hu Z, Bao J, Reecy JM (2008) CateGOrizer: a web-based program to batch analyze gene ontology classification categories. Online J Bioinforma 9(2):108–112

    Google Scholar 

  24. Rekhter MD, Chen J (2001) Molecular analysis of complex tissues is facilitated by laser capture microdissection: critical role of upstream tissue processing. Cell Biochem Biophys 35(1):103–113

    Article  CAS  Google Scholar 

  25. Draux F, Gobinet C, Sule-Suso J, Trussardi A, Manfait M, Jeannesson P, Sockalingum GD (2010) Raman spectral imaging of single cancer cells: probing the impact of sample fixation methods. Anal Bioanal Chem 397(7):2727–2737

    Article  CAS  Google Scholar 

  26. Vissers JP, Langridge JI, Aerts JM (2007) Analysis and quantification of diagnostic serum markers and protein signatures for Gaucher disease. Mol Cell Proteomics 6(5):755–766

    Article  CAS  Google Scholar 

  27. Hood BL, Darfler MM, Guiel TG, Furusato B, Lucas DA, Ringeisen BR, Sesterhenn IA, Conrads TP, Veenstra TD, Krizman DB (2005) Proteomic analysis of formalin-fixed prostate cancer tissue. Mol Cell Proteomics 4(11):1741–1753

    Article  CAS  Google Scholar 

  28. Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W, Coukos G, Geho DH, Petricoin EF 3rd, Liotta LA (2006) Laser-capture microdissection. Nat Protoc 1(2):586–603

    Article  CAS  Google Scholar 

  29. Rubakhin SS, Greenough WT, Sweedler JV (2003) Spatial profiling with MALDI MS: distribution of neuropeptides within single neurons. Anal Chem 75(20):5374–5380

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Ministry of Health, Rome, Italy (Ricerca Corrente 2011, BIO 06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Banfi.

Additional information

Maura Brioschi and Sonia Eligini contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 11596 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brioschi, M., Eligini, S., Crisci, M. et al. A mass spectrometry-based workflow for the proteomic analysis of in vitro cultured cell subsets isolated by means of laser capture microdissection. Anal Bioanal Chem 406, 2817–2825 (2014). https://doi.org/10.1007/s00216-014-7724-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7724-9

Keywords

Navigation