Advertisement

Analytical and Bioanalytical Chemistry

, Volume 406, Issue 12, pp 2779–2788 | Cite as

Determination of selected endocrine disrupting compounds in human fetal and newborn tissues by GC-MS

  • Achille CappielloEmail author
  • Giorgio Famiglini
  • Pierangela Palma
  • Veronica Termopoli
  • Anna Maria Lavezzi
  • Luigi Matturri
Research Paper
Part of the following topical collections:
  1. ABC Highlights: authored by Rising Stars and Top Experts

Abstract

Endocrine disrupting compounds (EDCs) include organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), carbamate pesticides, and plasticizers, such as bisphenol A (BPA). They persist in the environment because of their degradation resistance and bioaccumulate in the body tissues of humans and other mammals. Many studies are focused on the possible correlation between in utero exposure to EDCs and adverse health hazards in fetuses and newborns. In the last decade, environmental pollution has been considered a possible trigger for Sudden Infant Death Syndrome (SIDS) and Sudden Intrauterine Unexplained Death Syndrome (SIUDS), the most important death-causing syndromes in fetuses and newborns in developed countries. In this work, a rapid and sensitive analytical method was developed to determine the level of OCPs and OPPs, carbamates, and phenols in human fetal and newborn tissues (liver and brain) and to unveil the possible presence of non-targeted compounds. The target analytes where selected on the basis of their documented presence in the Trentino-Alto Adige region, an intensive agricultural area in northern Italy. A liquid-solid extraction procedure was applied on human and animal tissues and the extracts, after a solid phase extraction (SPE) clean-up procedure, were analyzed by gas chromatography coupled to a quadrupole mass spectrometric detector (GC-qMS). A GC-TOFMS (time-of-flight) instrument, because of its higher full-scan sensitivity, was used for a parallel detection of non-targeted compounds. Method validation included accuracy, precision, detection, and quantification limits (LODs; LOQs), and linearity response using swine liver and lamb brain spiked at different concentrations in the range of 0.4–8000.0 ng/g. The method gave good repeatability and extraction efficiency. Method LOQs ranged from 0.4–4.0 ng/g in the selected matrices. Good linearity was obtained over four orders of magnitude starting from LOQs. Isotopically labeled internal standards were used for quantitative calculations. The method was then successfully applied to the analysis of liver and brain tissues from SIUDS and SIDS victims coming from the above mentioned region.

Keywords

Endocrine disrupting compounds (EDCs) Sudden Intrauterine Unexplained Death Syndrome (SIUDS) Sudden Infant Death Syndrome (SIDS) Gas chromatography-mass xpectrometry (GC-MS) Fast-GC TOF (time-of-flight) MS 

Notes

Acknowledgments

The authors thank DANI Instruments S.p.A for providing the GC-TOFMS instrument.

This study was supported by the Italian National Research Program, PRIN 2009.

References

  1. 1.
    Covaci A, Chu S, Shepens P (2003) Environ Res 93:167–176CrossRefGoogle Scholar
  2. 2.
    Yu GW, Laseter J, Mylander CJ (2011) Environ Public Health 2011:1–11CrossRefGoogle Scholar
  3. 3.
    Rivas A, Olea N, Olea-Serrano F (2005) Trends Anal Chem 16:613–619CrossRefGoogle Scholar
  4. 4.
    Casas M, Chevrier C, Den Hond E, Fernandez MF, Pierik F, Philippat C, Slama R, Toft G, Vandentorren S, Wilhelm M, Vrijheid M (2013) Int J Hyg Environ Health 216:230–242CrossRefGoogle Scholar
  5. 5.
    Vizcaino E, Grimalt JO, Lopez-Espinosa MJ, Llop S, Rebagliato M, Ballester F (2011) Environ Int 37(1):152CrossRefGoogle Scholar
  6. 6.
    Zhao Y, Ruan X, Li Y, Yan M, Qin Z (2013) Environ Sci Technol 47(11):5939–5946CrossRefGoogle Scholar
  7. 7.
    Rauch SA, Braun JM, Boyd Barr D, Calafat AM, Khoury J, Montesano MA, Yolton K, Lanphear BP (2012) Environ Health Perspect 120:1055–1060CrossRefGoogle Scholar
  8. 8.
    Bergonzi R, Specchia C, Dinolfo M, Tommasi C, De Palma G, Frusca T, Apostoli P (2009) Chemosphere 76:747–754CrossRefGoogle Scholar
  9. 9.
    Bergonzi R, Specchia C, Dinolfo M, Tommasi C, De Palma G, Frusca T, Apostoli P (2011) Sci Total Environ 409:2888–2893CrossRefGoogle Scholar
  10. 10.
    Shen H, Main KM, Virtanen HE, Damggard IN, Haavisto AM, Kaleva M, Boisen KA, Schmidt IM, Chellakooty M, Skakkebaek NE, Toppari J, Scrhamm KW (2007) Chemosphere 67:S256–S262CrossRefGoogle Scholar
  11. 11.
    Pulkrabovà J, Hràdkovà P, Hajslova J (2009) Poustka. J Environ Int 35:63–68CrossRefGoogle Scholar
  12. 12.
    Jimenez-Diaz I, Zafra-Gòmez A, Ballesteros O, Navea N, Navalòn A (2010) Fernandez MF J Chromatogr B 878:3363–3369CrossRefGoogle Scholar
  13. 13.
    Pathak R, Suke SG, Ahmed RS, Tripathi AK, Guleria K, Sharma CS, Makhijani SD, Mishra M, Banerjee BD (2008) Bull Environ Toxicol 81:216–219CrossRefGoogle Scholar
  14. 14.
    Jimenez-Torres M, Campoy Folgoso C, Canabatr Reche F, Rivas Valasco A, Cerrillo Garcia I, Mariscal Arcas M, Olea-Serrano F (2006) Sci Total Environ 372:32–38CrossRefGoogle Scholar
  15. 15.
    Fukata H, Omori M, Osada H, Todaka E, Mori C (2005) Environ Health Perspect 113:297–303CrossRefGoogle Scholar
  16. 16.
    Mustafa MD, Pathak R, Tripathi AK, Ahmed RS, Guleria K, Banerjee BD (2010) Environ Monit Assess 171:633–638CrossRefGoogle Scholar
  17. 17.
    Daglioglu N, Gulmen MK, Akcan R, Efeoglu P, Yener F, Unal I (2010) Bull Environ Contam Toxicol 85:97–102CrossRefGoogle Scholar
  18. 18.
    Myllynen P, Pasanen M, Pelkonen O (2005) Placenta 26:361–371CrossRefGoogle Scholar
  19. 19.
    Schonfelder G, Wittfoht W, Hopp H, Talsness CE, Paul M, Chahoud I (2002) Environ Health Perspect 110:A703–A707CrossRefGoogle Scholar
  20. 20.
    Yamada H, Furuta I, Kato EH, Kataota S, Usuki Y, Kobashi G (2002) Reprod Toxicol 16:735–740CrossRefGoogle Scholar
  21. 21.
    Padmanabhan V, Siefert K, Ranson S, Johnson T, Pinkerton J, Anderson L (2008) J Perinatol 28:258–263CrossRefGoogle Scholar
  22. 22.
    Stefanidou M, Maravelias C, Spiliopoulou C (2009) Curr Drug Targets 9:269–276Google Scholar
  23. 23.
    Rylander L, Stromberg U, Hagmar L (2000) Chemosphere 40:1255–1262CrossRefGoogle Scholar
  24. 24.
    Ezkenasi B, Rosas LG, Marks AR, Bradman A, Harley K, Holland N, Johnson C, Fenster L, Barr DB (2008) Basic Clin Pharmacol 102:228–236CrossRefGoogle Scholar
  25. 25.
    Siddiqui MKJ, Srivastava S, Srivastava SP, Mehrota PK, Mathur N, Tandon I (2003) Int Arch Occup Environ Health 76:75–80Google Scholar
  26. 26.
    Ranjit N, Siefert K, Padmanabhan V (2010) J Perinatol 30:2–9CrossRefGoogle Scholar
  27. 27.
    Yolton K, Xu Y, Strauss D, Altaye M, Calafat AM, Khoury J (2011) Teratoxicol Neurol 33:558–564Google Scholar
  28. 28.
    Perera FP, Rauh V, Tsai WY, Kinney P, Camann D, Barr D, Bernert T, Garfinkel R, Tu YH, Diaz D, Dietrich J, Whyatt RM (2003) Environ Health Perspect 111:201–215CrossRefGoogle Scholar
  29. 29.
    (2006) State of the science of endocrine disrupting chemicals 2012. Bergman A, Heindel, JJ, Jobling S, Kidd KA, Zoeller RT, Eds. ISBN: 978-92-807-3274-0 (UNEP) and 978 92 4 150503 1 (WHO) (NLM classification: WK 102) World Health Organization (WHO) 75Google Scholar
  30. 30.
    Lander T, Ed.(2006) World Health Organization (WHO) Neonatal and perinatal mortality: country, regional, and global estimates. 69, ISBN 92-4-156320-6Google Scholar
  31. 31.
    Antignac JP, Cariou R, Zalko D, Berrebi A, Cravedi JP, Maumea D, Marchanda P, Monteaua F, Riud A, Andrea F, Le Bizec B (2009) Environ Pollut 157:164–173CrossRefGoogle Scholar
  32. 32.
    Debrauwer L, Riu A, Jouahri M, Rathahao E, Jouanin I, Antignac JP, Cariou R, Le Bizec B, Zalko D (2005) J Chromatogr A 1082:98–109CrossRefGoogle Scholar
  33. 33.
  34. 34.
    Vanderberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Endrocr Rev 30:75–95CrossRefGoogle Scholar
  35. 35.
    Kuo HW, Ding WH (2004) J Chromatogr A 1027:67–74CrossRefGoogle Scholar
  36. 36.
    Le HH, Carlson EM, Chua JP, Belcher SM (2008) Toxicol Lett 176:149–156CrossRefGoogle Scholar
  37. 37.
    Matsumoto A, Kunugita N, Kitagawa K, Isse T, Oyama T, Foureman G (2003) Environ Health Perspect 111:101–104CrossRefGoogle Scholar
  38. 38.
    Brock JW, Yoshimura Y, Barr JR, Maggio VL, Graiser SR, Nazakawa H (2001) J Expo Anal Environ Epidemiol 11:323–329CrossRefGoogle Scholar
  39. 39.
    Arakawa C, Fujimaki K, Yoshinaga J, Imai H, Serizawa S, Shiraishi H (2004) Environ Health Prev Med 9:22–26CrossRefGoogle Scholar
  40. 40.
    Vom Saal FS, Huges C (2005) Environ Health Perspect 113:326–933CrossRefGoogle Scholar
  41. 41.
    Welshons WV (2006) Nagel SC, vom Saal FS. Endocrinology 147:s56–s69CrossRefGoogle Scholar
  42. 42.
    Fernandes VC, Pestana D, Monteiro R, Faria G, Meireles M, Correia-Sa L, Teixeira D, Faria A, Calhau C, Domingues VF, Delerue-Matos C (2012) Biomed Chromatogr 26:1494–1501CrossRefGoogle Scholar
  43. 43.
    Djordjevic MV, Hoffman D, Fan J, Prokopczyk B, Citron ML, Stellman SD (1994) Carcinogenesis 15(11):2581–2585CrossRefGoogle Scholar
  44. 44.
    Saito K, Sjödin A, Sandan CD, Davis MD, Nakazawa H, Matsuki Y, Patterson DG Jr (2004) Chemosphere 57(5):373–381CrossRefGoogle Scholar
  45. 45.
    Cartiser N, Bèvalot F, Le Meur C, Gailard Y, Malicier D, Hubert N, Guitton J (2011) J Chromatogr B 879:2909–2918CrossRefGoogle Scholar
  46. 46.
    Doucet J, Tague B, Arnold DL, Cooke GM, Hayward S, Goodyer CG (2009) Environ Health Perspect 117:605–610CrossRefGoogle Scholar
  47. 47.
    Rallis GN, Sakkas VA, Boumba VA, Vougiouklakis T (2012) J Chromatogr A 1227:1–9CrossRefGoogle Scholar
  48. 48.
    Medina CM, Pitarch E, Portolès T, Lòpez FJ, Hernandèz F (2009) J Sep Sci 32:2090–2102CrossRefGoogle Scholar
  49. 49.
    Moreno Frias M, Jimenèz Torres M, Garrido Frenich A, Martinèz Vidal JL, Olea-Serrano F, Olea N (2004) Biomed Chromatogr 18:102–111CrossRefGoogle Scholar
  50. 50.
    Duarte-Davidson R, Wilson SC, Jones KC (1994) Adipose Environ Pollut 84:69–77CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Achille Cappiello
    • 1
    Email author
  • Giorgio Famiglini
    • 1
  • Pierangela Palma
    • 1
  • Veronica Termopoli
    • 1
  • Anna Maria Lavezzi
    • 2
  • Luigi Matturri
    • 2
  1. 1.LC-MS Laboratory, DiSTeVAUniversity of UrbinoUrbinoItaly
  2. 2.Research Center “Lino Rossi”University of MilanMilanItaly

Personalised recommendations