Analytical and Bioanalytical Chemistry

, Volume 406, Issue 1, pp 139–161 | Cite as

On-chip processing of particles and cells via multilaminar flow streams

  • Mark D. Tarn
  • Maria J. Lopez-Martinez
  • Nicole PammeEmail author
Part of the following topical collections:
  1. ABC Highlights: authored by Rising Stars and Top Experts


The processing of particles, cells, and droplets for reactions, analyses, labeling, and coating is an important aspect of many microfluidic workflows. However, performing multi-step processes is typically a laborious and time-consuming endeavor. By exploiting the laminar nature of flow within microchannels, such procedures can benefit in terms of both speed and simplicity. This can be achieved either by manipulating the flow streams around the objects of interest, particularly for the localized perfusion of cells, or by manipulating the objects themselves within the streams via a range of forces. Here, we review the variety of methods that have been employed for performing such “multilaminar flow” procedures on particles, cells, and droplets.


Continuous flow Microfluidics Microparticles Cells Droplets Trapping Deflection Multilaminar flow 



The authors thank Sally A. Peyman, Giuseppe Benazzi, and Alexander Iles for proofreading.


  1. 1.
    Velve-Casquillas G, Le Berre M, Piel M, Tran PT (2010) Microfluidic tools for cell biological research. Nano Today 5(1):28–47Google Scholar
  2. 2.
    Mu X, Zheng WF, Sun JS, Zhang W, Jiang XY (2013) Microfluidics for manipulating cells. Small 9(1):9–21Google Scholar
  3. 3.
    Lim CT, Zhang Y (2007) Bead-based microfluidic immunoassays: the next generation. Biosens Bioelectron 22(7):1197–1204Google Scholar
  4. 4.
    Verpoorte E (2003) Beads and chips: new recipes for analysis. Lab Chip 3(4):60N–68NGoogle Scholar
  5. 5.
    Kawaguchi H (2000) Functional polymer microspheres. Prog Polym Sci 25(8):1171–1210Google Scholar
  6. 6.
    Ong S-E, Zhang S, Du H, Fu Y (2008) Fundamental principles and applications of microfluidic systems. Front Biosci 13(7):2757–2773Google Scholar
  7. 7.
    Capretto L, Cheng W, Hill M, Zhang X (2011) Micromixing within microfluidic devices microfluidics. Top Curr Chem 304:27–68Google Scholar
  8. 8.
    Lee C-Y, Chang C-L, Wang Y-N, Fu L-M (2011) Microfluidic mixing: a review. Int J Mol Sci 12(5):3263–3287Google Scholar
  9. 9.
    Atencia J, Beebe DJ (2005) Controlled microfluidic interfaces. Nature 437(7059):648–655Google Scholar
  10. 10.
    Brody JP, Yager P (1997) Diffusion-based extraction in a microfabricated device. Sensors Actuators A 58(1):13–18Google Scholar
  11. 11.
    Wiles C, Watts P (2011) Recent advances in micro reaction technology. Chem Commun 47(23):6512–6535Google Scholar
  12. 12.
    Wiles C, Watts P (2012) Continuous flow reactors: a perspective. Green Chem 14(1):38–54Google Scholar
  13. 13.
    Kamholz AE, Weigl BH, Finlayson BA, Yager P (1999) Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Anal Chem 71(23):5340–5347Google Scholar
  14. 14.
    Hatch A, Kamholz AE, Hawkins KR, Munson MS, Schilling EA, Weigl BH, Yager P (2001) A rapid diffusion immunoassay in a T-sensor. Nat Biotechnol 19(5):461–465Google Scholar
  15. 15.
    Hatch A, Garcia E, Yager P (2004) Diffusion-based analysis of molecular interactions in microfluidic devices. Proc IEEE 92(1):126–139Google Scholar
  16. 16.
    Kenis PJA, Ismagilov RF, Whitesides GM (1999) Microfabrication inside capillaries using multiphase laminar flow patterning. Science 285(5424):83–85Google Scholar
  17. 17.
    Kenis PJA, Ismagilov RF, Takayama S, Whitesides GM, Li SL, White HS (2000) Fabrication inside microchannels using fluid flow. Acc Chem Res 33(12):841–847Google Scholar
  18. 18.
    Takayama S, Ostuni E, Qian XP, McDonald JC, Jiang XY, LeDuc P, Wu MH, Ingber DE, Whitesides GM (2001) Topographical micropatterning of poly(dimethylsiloxane) using laminar flows of liquids in capillaries. Adv Mater 13(8):570–574Google Scholar
  19. 19.
    Zhao B, Moore JS, Beebe DJ (2001) Surface-directed liquid flow inside microchannels. Science 291(5506):1023–1026Google Scholar
  20. 20.
    Takayama S, McDonald JC, Ostuni E, Liang MN, Kenis PJA, Ismagilov RF, Whitesides GM (1999) Patterning cells and their environments using multiple laminar fluid flows in capillary networks. Proc Natl Acad Sci U S A 96(10):5545–5548Google Scholar
  21. 21.
    Frampton JP, Lai D, Sriram H, Takayama S (2011) Precisely targeted delivery of cells and biomolecules within microchannels using aqueous two-phase systems. Biomed Microdevices 13(6):1043–1051Google Scholar
  22. 22.
    Bransky A, Korin N, Levenberg S (2008) Experimental and theoretical study of selective protein deposition using focused micro laminar flows. Biomed Microdevices 10(3):421–428Google Scholar
  23. 23.
    Tarn MD, Pamme N (2011) Microfluidic platforms for performing surface-based clinical assays. Expert Rev Mol Diagn 11(7):711–720Google Scholar
  24. 24.
    Nilsson J, Evander M, Hammarstrom B, Laurell T (2009) Review of cell and particle trapping in microfluidic systems. Anal Chim Acta 649(2):141–157Google Scholar
  25. 25.
    Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7:1644–1659Google Scholar
  26. 26.
    Kersaudy-Kerhoas M, Dhariwal R, Desmulliez MPY (2008) Recent advances in microparticle continuous separation. IET Nanobiotechnol 2(1):1–13Google Scholar
  27. 27.
    Lenshof A, Laurell T (2010) Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev 39(3):1203–1217Google Scholar
  28. 28.
    Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK, Lee W, Amini H, Di Carlo D (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397(8):3249–3267Google Scholar
  29. 29.
    Tsutsui H, Ho CM (2009) Cell separation by non-inertial force fields in microfluidic systems. Mech Res Commun 36(1):92–103Google Scholar
  30. 30.
    Ismagilov RF, Stroock AD, Kenis PJA, Whitesides G, Stone HA (2000) Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl Phys Lett 76(17):2376–2378Google Scholar
  31. 31.
    Peyman SA, Patel H, Belli N, Iles A, Pamme N (2009) A microfluidic system for performing fast, sequential biochemical procedures on the surface of mobile magnetic particles in continuous flow. Magnetohydrodynamics 45(3):361–370Google Scholar
  32. 32.
    Peyman SA, Iles A, Pamme N (2009) Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow. Lab Chip 9(21):3110–3117Google Scholar
  33. 33.
    Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM (2001) Laminar flows: subcellular positioning of small molecules. Nature 411(6841):1016–1016Google Scholar
  34. 34.
    Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM (2003) Selective chemical treatment of cellular microdomains using multiple laminar streams. Chem Biol 10(2):123–130Google Scholar
  35. 35.
    Sawano A, Takayama S, Matsuda M, Miyawaki A (2002) Lateral propagation of EGF signaling after local stimulation is dependent on receptor density. Dev Cell 3(2):245–257Google Scholar
  36. 36.
    Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF (2005) Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434(7037):1134–1138Google Scholar
  37. 37.
    Lucchetta EM, Munson MS, Ismagilov RF (2006) Characterization of the local temperature in space and time around a developing Drosophila embryo in a microfluidic device. Lab Chip 6(2):185–190Google Scholar
  38. 38.
    Lucchetta EM, Carthew RW, Ismagilov RF (2009) The endo-siRNA pathway is essential for robust development of the Drosophila embryo. PLoS One 4(10):e7576Google Scholar
  39. 39.
    Nie F-Q, Yamada M, Kobayashi J, Yamato M, Kikuchi A, Okano T (2007) On-chip cell migration assay using microfluidic channels. Biomaterials 28(27):4017–4022Google Scholar
  40. 40.
    van der Meer AD, Vermeul K, Poot AA, Feijen J, Vermes I (2010) A microfluidic wound-healing assay for quantifying endothelial cell migration. Am J Physiol Heart Circ Physiol 298(2):H719–H725Google Scholar
  41. 41.
    Villa-Diaz LG, Torisawa Y-S, Uchida T, Ding J, Nogueira-de-Souza NC, O'Shea KS, Takayama S, Smith GD (2009) Microfluidic culture of single human embryonic stem cell colonies. Lab Chip 9(12):1749–1755Google Scholar
  42. 42.
    Li L, Nie Y, Shi X, Wu H, Ye D, Chen H (2011) Partial transfection of cells using laminar flows in microchannels. Biomicrofluidics 5(3):036503Google Scholar
  43. 43.
    Liu Y, Butler WB, Pappas D (2012) Spatially selective reagent delivery into cancer cells using a two-layer microfluidic culture system. Anal Chim Acta 743:125–130Google Scholar
  44. 44.
    Lee CY, Romanova EV, Sweedler JV (2013) Laminar stream of detergents for subcellular neurite damage in a microfluidic device: a simple tool for the study of neuroregeneration. J Neural Eng 10(3):036020Google Scholar
  45. 45.
    Lee SW, Yamamoto T, Noji H, Fujii T (2006) Chemical delivery microsystem for single-molecule analysis using multilaminar continuous flow. Enzym Microb Technol 39(3):519–525Google Scholar
  46. 46.
    Hersen P, McClean MN, Mahadevan L, Ramanathan S (2008) Signal processing by the HOG MAP kinase pathway. Proc Natl Acad Sci U S A 105(20):7165–7170Google Scholar
  47. 47.
    Sinclair J, Pihl J, Olofsson J, Karlsson M, Jardemark K, Chiu DT, Orwar O (2002) A cell-based bar code reader for high-throughput screening of ion channel–ligand interactions. Anal Chem 74(24):6133–6138Google Scholar
  48. 48.
    Sinclair J, Olofsson J, Pihl J, Orwar O (2003) Stabilization of high-resistance seals in patch-clamp recordings by laminar flow. Anal Chem 75(23):6718–6722Google Scholar
  49. 49.
    Olofsson J, Pihl J, Sinclair J, Sahlin E, Karlsson M, Orwar O (2004) A microfluidics approach to the problem of creating separate solution environments accessible from macroscopic volumes. Anal Chem 76(17):4968–4976Google Scholar
  50. 50.
    Sinclair J, Granfeldt D, Pihl J, Millingen M, Lincoln P, Farre C, Peterson L, Orwar O (2006) A biohybrid dynamic random access memory. J Am Chem Soc 128(15):5109–5113Google Scholar
  51. 51.
    Granfeldt D, Sinclair J, Millingen M, Farre C, Lincoln P, Orwar O (2006) Controlling desensitized states in ligand−receptor interaction studies with cyclic scanning patch-clamp protocols. Anal Chem 78(23):7947–7953Google Scholar
  52. 52.
    Millingen M, Bridle H, Jesorka A, Lincoln P, Orwar O (2008) Ligand-specific temperature-dependent shifts in EC50 values for the GABAA receptor. Anal Chem 80(1):340–343Google Scholar
  53. 53.
    Olofsson J, Bridle H, Jesorka A, Isaksson I, Weber S, Orwar O (2009) Direct access and control of the intracellular solution environment in single cells. Anal Chem 81(5):1810–1818Google Scholar
  54. 54.
    Blake AJ, Pearce TM, Rao NS, Johnson SM, Williams JC (2007) Multilayer PDMS microfluidic chamber for controlling brain slice microenvironment. Lab Chip 7(7):842–849Google Scholar
  55. 55.
    Meier M, Lucchetta EM, Ismagilov RF (2010) Chemical stimulation of the Arabidopsis thaliana root using multi-laminar flow on a microfluidic chip. Lab Chip 10(16):2147–2153Google Scholar
  56. 56.
    Taylor AM, Dieterich DC, Ito HT, Kim SA, Schuman EM (2010) Microfluidic local perfusion chambers for the visualization and manipulation of synapses. Neuron 66(1):57–68Google Scholar
  57. 57.
    Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304(5673):987–990Google Scholar
  58. 58.
    Morton KJ, Loutherback K, Inglis DW, Tsui OK, Sturm JC, Chou SY, Austin RH (2008) Crossing microfluidic streamlines to lyse, label and wash cells. Lab Chip 8(9):1448–1453Google Scholar
  59. 59.
    Kantak C, Beyer S, Yobas L, Bansal T, Trau D (2011) A 'microfluidic pinball' for on-chip generation of Layer-by-Layer polyelectrolyte microcapsules. Lab Chip 11(6):1030–1035Google Scholar
  60. 60.
    Sochol RD, Li S, Lee LP, Lin L (2012) Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing. Lab Chip 12(20):4168–4177Google Scholar
  61. 61.
    Chung SE, Park W, Shin S, Lee SA, Kwon S (2008) Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nat Mater 7(7):581–587Google Scholar
  62. 62.
    Chung SE, Park W, Shin S, Lee SA, Kwon S (2008) Guided fluidic self-assembly of microtrains using railed microfluidics. Paper presented at the FNANO08 - 5th Annual Conference on Foundations of Nanoscience, Snowbird Cliff Lodge, Snowbird, Utah, USA, 22–25 April 2008Google Scholar
  63. 63.
    Chung SE, Park W, Park H, Yu K, Park N, Kwon S (2007) Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels. Appl Phys Lett 91(4):041106Google Scholar
  64. 64.
    Dendukuri D, Pregibon DC, Collins J, Hatton TA, Doyle PS (2006) Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater 5(5):365–369Google Scholar
  65. 65.
    Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76(18):5465–5471Google Scholar
  66. 66.
    Chiang Y-Y, West J (2013) Ultrafast cell switching for recording cell surface transitions: new insights into epidermal growth factor receptor signalling. Lab Chip 13(6):1031–1034Google Scholar
  67. 67.
    Yamada M, Seki M (2005) Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5(11):1233–1239Google Scholar
  68. 68.
    Yamada M, Kobayashi J, Yamato M, Seki M, Okano T (2008) Millisecond treatment of cells using microfluidic devices via two-step carrier-medium exchange. Lab Chip 8(5):772–778Google Scholar
  69. 69.
    Toyama K, Yamada M, Seki M (2012) Isolation of cell nuclei in microchannels by short-term chemical treatment via two-step carrier medium exchange. Biomed Microdevices 14(4):751–757Google Scholar
  70. 70.
    Yang S, Ji B, Ündar A, Zahn JD (2006) Microfluidic devices for continuous blood plasma separation and analysis during pediatric cardiopulmonary bypass procedures. ASAIO J 52(6):698–704Google Scholar
  71. 71.
    Yang S, Undar A, Zahn JD (2007) Continuous cytometric bead processing within a microfluidic device for bead based sensing platforms. Lab Chip 7(5):588–595Google Scholar
  72. 72.
    Pethig R (2010) Dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4(2):022811Google Scholar
  73. 73.
    Khoshmanesh K, Nahavandi S, Baratchi S, Mitchell A, Kalantar-zadeh K (2011) Dielectrophoretic platforms for bio-microfluidic systems. Biosens Bioelectron 26(5):1800–1814Google Scholar
  74. 74.
    Seger U, Gawad S, Johann R, Bertsch A, Renaud P (2004) Cell immersion and cell dipping in microfluidic devices. Lab Chip 4(2):148–151Google Scholar
  75. 75.
    Tornay R, Braschler T, Demierre N, Steitz B, Finka A, Hofmann H, Hubbell JA, Renaud P (2008) Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles. Lab Chip 8(2):267–273Google Scholar
  76. 76.
    Tornay R, Braschler T, Renaud P (2009) Wide channel dielectrophoresis-based particle exchanger with electrophoretic diffusion compensation. Lab Chip 9(5):657–660Google Scholar
  77. 77.
    Pamme N (2006) Magnetism and microfluidics. Lab Chip 6(1):24–38Google Scholar
  78. 78.
    Gijs MAM (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1(1):22–40Google Scholar
  79. 79.
    Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518–1563Google Scholar
  80. 80.
    Shevkoplyas SS, Siegel AC, Westervelt RM, Prentiss MG, Whitesides GM (2007) The force acting on a superparamagnetic bead due to an applied magnetic field. Lab Chip 7(10):1294–1302Google Scholar
  81. 81.
    Pamme N, Manz A (2004) On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. Anal Chem 76(24):7250–7256Google Scholar
  82. 82.
    Peyman SA, Iles A, Pamme N (2008) Rapid on-chip multi-step (bio)chemical procedures in continuous flow - manoeuvring particles through co-laminar reagent streams. Chem Commun 10:1220–1222Google Scholar
  83. 83.
    Tarn MD, Peyman SA, Fakhrullin RF, Iles A, Paunov VN, Pamme N (2010) Magnetically actuated particle-based procedures in continuous flow. In: The 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences Groningen, The Netherlands, 3–7 October 2010, pp 1679–1681Google Scholar
  84. 84.
    Vojtíšek M, Iles A, Pamme N (2010) Rapid, multistep on-chip DNA hybridization in continuous flow on magnetic particles. Biosens Bioelectron 25(9):2172–2176Google Scholar
  85. 85.
    Tarn MD, Fakhrullin RF, Paunov VN, Pamme N (2013) Microfluidic device for the rapid coating of magnetic cells with polyelectrolytes. Mater Lett 95:182–185Google Scholar
  86. 86.
    Fakhrullin RF, Zamaleeva AI, Minullina RT, Konnova SA, Paunov VN (2012) Cyborg cells: functionalization of living cells with polymers and nanomaterials. Chem Soc Rev 41:4189–4206Google Scholar
  87. 87.
    Baier T, Mohanty S, Drese KS, Rampf F, Kim J, Schoenfeld F (2009) Modelling immunomagnetic cell capture in CFD. Microfluid Nanofluid 7(2):205–216Google Scholar
  88. 88.
    Kim J, Steinfeld U, Lee H-H, Seidel H (2007) Ieee development of a novel micro immune-magnetophoresis cell sorter. In: 2007 IEEE Sensors, vols 1–3, pp 1081–1084Google Scholar
  89. 89.
    Kim J, Lee H-H, Steinfeld U, Seidel H (2009) Fast capturing on micromagnetic cell sorter. IEEE Sensors J 9(8):908–913Google Scholar
  90. 90.
    Kim J, Park J, Mueller M, Lee H-H, Seidel H (2009) Uniform magnetic mobility in a curved magnetophoretic channel. In: 2009 IEEE Sensors, vols 1–3, pp 1165–1167Google Scholar
  91. 91.
    Sasso LA, Undar A, Zahn JD (2010) Autonomous magnetically actuated continuous flow microimmunofluorocytometry assay. Microfluid Nanofluid 9(2–3):253–265Google Scholar
  92. 92.
    Sasso L, Johnston I, Zheng M, Gupte R, Ündar A, Zahn J (2012) Automated microfluidic processing platform for multiplexed magnetic bead immunoassays. Microfluid Nanofluid 13(4):603–612Google Scholar
  93. 93.
    Sasso LA, Aran K, Guan Y, Ündar A, Zahn JD (2013) Continuous monitoring of inflammation biomarkers during simulated cardiopulmonary bypass using a microfluidic immunoassay device—a pilot study. Artif Organs 37(1):E9–E17Google Scholar
  94. 94.
    Ganguly R, Hahn T, Hardt S (2010) Magnetophoretic mixing for in situ immunochemical binding on magnetic beads in a microfluidic channel. Microfluid Nanofluid 8(6):739–753Google Scholar
  95. 95.
    Modak N, Datta A, Ganguly R (2010) Numerical analysis of transport and binding of a target analyte and functionalized magnetic microspheres in a microfluidic immunoassay. J Phys D Appl Phys 43(48):485002Google Scholar
  96. 96.
    Karle M, Miwa J, Czilwik G, Auwaerter V, Roth G, Zengerle R, von Stetten F (2010) Continuous microfluidic DNA extraction using phase-transfer magnetophoresis. Lab Chip 10(23):3284–3290Google Scholar
  97. 97.
    Karle M, Woehrle J, Miwa J, Paust N, Roth G, Zengerle R, von Stetten F (2011) Controlled counter-flow motion of magnetic bead chains rolling along microchannels. Microfluid Nanofluid 10(4):935–939Google Scholar
  98. 98.
    Zhou Y, Wang Y, Lin Q (2010) A microfluidic device for continuous-flow magnetically controlled capture and isolation of microparticles. J Microelectromech Syst 19(4):743–751Google Scholar
  99. 99.
    Lee SHS, Hatton TA, Khan SA (2011) Microfluidic continuous magnetophoretic protein separation using nanoparticle aggregates. Microfluid Nanofluid 11(4):429–438Google Scholar
  100. 100.
    Gao Y, Lam AWY, Chan WCW (2013) Automating quantum dot barcode assays using microfluidics and magnetism for the development of a point-of-care device. ACS Appl Mater Interfaces 5(8):2853–2860Google Scholar
  101. 101.
    Tsai SSH, Wexler JS, Wan J, Stone HA (2011) Conformal coating of particles in microchannels by magnetic forcing. Appl Phys Lett 99(15):153509Google Scholar
  102. 102.
    Tsai SSH, Wexler JS, Wan J, Stone HA (2013) Microfluidic ultralow interfacial tensiometry with magnetic particles. Lab Chip 13(1):119–125Google Scholar
  103. 103.
    Berry SM, Alarid ET, Beebe DJ (2011) One-step purification of nucleic acid for gene expression analysis via Immiscible Filtration Assisted by Surface Tension (IFAST). Lab Chip 11(10):1747–1753Google Scholar
  104. 104.
    Tarn MD, Hirota N, Iles A, Pamme N (2009) On-chip diamagnetic repulsion in continuous flow. Sci Technol Adv Mater 10(1):014611Google Scholar
  105. 105.
    Peyman SA, Kwan EY, Margarson O, Iles A, Pamme N (2009) Diamagnetic repulsion—a versatile tool for label-free particle handling in microfluidic devices. J Chromatogr A 1216(52):9055–9062Google Scholar
  106. 106.
    Shen F, Hwang H, Hahn YK, Park J-K (2012) Label-free cell separation using a tunable magnetophoretic repulsion force. Anal Chem 84(7):3075–3081Google Scholar
  107. 107.
    Laurell T, Petersson F, Nilsson A (2007) Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem Soc Rev 36(3):492–506Google Scholar
  108. 108.
    Bruus H, Dual J, Hawkes J, Hill M, Laurell T, Nilsson J, Radel S, Sadhal S, Wiklund M (2011) Forthcoming Lab on a Chip tutorial series on acoustofluidics: acoustofluidics—exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation. Lab Chip 11(21):3579–3580Google Scholar
  109. 109.
    Augustsson P, Åberg L, Swärd-Nilsson A-M, Laurell T (2009) Buffer medium exchange in continuous cell and particle streams using ultrasonic standing wave focusing. Microchim Acta 164(3–4):269–277Google Scholar
  110. 110.
    Augustsson P, Malm J, Ekstrom S (2012) Acoustophoretic microfluidic chip for sequential elution of surface bound molecules from beads or cells. Biomicrofluidics 6(3):034115Google Scholar
  111. 111.
    Augustsson P, Laurell T (2012) Acoustofluidics 11: affinity specific extraction and sample decomplexing using continuous flow acoustophoresis. Lab Chip 12(10):1742–1752Google Scholar
  112. 112.
    Augustsson P, Laurell T, Ekstrom S (2008) Flow-through chip for sequential treatment and analyte elution from beads or cells. In: The 12th International Conference on Miniaturized Systems in Chemistry and Life Sciences, San Diego, California, USA, pp 671–673Google Scholar
  113. 113.
    Hunt HC, Wilkinson JS (2008) Optofluidic integration for microanalysis. Microfluid Nanofluid 4(1–2):53–79Google Scholar
  114. 114.
    Jonas A, Zemanek P (2008) Light at work: the use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis 29(24):4813–4851Google Scholar
  115. 115.
    Mohanty S (2012) Optically-actuated translational and rotational motion at the microscale for microfluidic manipulation and characterization. Lab Chip 12(19):3624–3636Google Scholar
  116. 116.
    Eriksson E, Enger J, Nordlander B, Erjavec N, Ramser K, Goksor M, Hohmann S, Nystrom T, Hanstorp D (2007) A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. Lab Chip 7(1):71–76Google Scholar
  117. 117.
    Eriksson E, Scrimgeour J, Granéli A, Ramser K, Wellander R, Enger J, Hanstorp D, Goksör M (2007) Optical manipulation and microfluidics for studies of single cell dynamics. J Opt A Pure Appl Opt 9(8):S113–S121Google Scholar
  118. 118.
    Boer G, Johann R, Rohner J, Merenda F, Delacretaz G, Renaud P, Salathe RP (2007) Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip. Rev Sci Instrum 78(11):116101Google Scholar
  119. 119.
    Eriksson E, Sott K, Lundqvist F, Sveningsson M, Scrimgeour J, Hanstorp D, Goksor M, Graneli A (2010) A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning. Lab Chip 10(5):617–625Google Scholar
  120. 120.
    Wang T, Oehrlein S, Somoza MM, Sanchez Perez JR, Kershner R, Cerrina F (2011) Optical tweezers directed one-bead one-sequence synthesis of oligonucleotides. Lab Chip 11(9):1629–1637Google Scholar
  121. 121.
    Wang J (2012) Cargo-towing synthetic nanomachines: towards active transport in microchip devices. Lab Chip 12(11):1944–1950Google Scholar
  122. 122.
    Kim T, Cheng L-J, Kao M-T, Hasselbrink EF, Guo L, Meyhofer E (2009) Biomolecular motor-driven molecular sorter. Lab Chip 9(9):1282–1285Google Scholar
  123. 123.
    Hwang H, Park J-K (2011) Optoelectrofluidic platforms for chemistry and biology. Lab Chip 11(1):33–47Google Scholar
  124. 124.
    Piazza R (2008) Thermophoresis: moving particles with thermal gradients. Soft Matter 4(9):1740–1744Google Scholar
  125. 125.
    Abecassis B, Cottin-Bizonne C, Ybert C, Ajdari A, Bocquet L (2008) Boosting migration of large particles by solute contrasts. Nat Mater 7(10):785–789Google Scholar
  126. 126.
    Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046Google Scholar
  127. 127.
    Masaeli M, Sollier E, Amini H, Mao W, Camacho K, Doshi N, Mitragotri S, Alexeev A, Di Carlo D (2012) Continuous inertial focusing and separation of particles by shape. Phys Rev X 2(3):031017Google Scholar
  128. 128.
    Ding X, Li P, Lin S-CS, Stratton ZS, Nama N, Guo F, Slotcavage D, Mao X, Shi J, Costanzo F, Huang TJ (2013) Surface acoustic wave microfluidics. Lab Chip 13(18):3626–3649Google Scholar
  129. 129.
    Xie Y, Zhao C, Zhao Y, Li S, Rufo J, Yang S, Guo F, Huang TJ (2013) Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles. Lab Chip 13(9):1772–1779Google Scholar
  130. 130.
    Zheng Y, Liu H, Wang Y, Zhu C, Wang S, Cao J, Zhu S (2011) Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble. Lab Chip 11(22):3816–3820Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mark D. Tarn
    • 1
  • Maria J. Lopez-Martinez
    • 1
  • Nicole Pamme
    • 1
    Email author
  1. 1.Department of ChemistryThe University of HullHullUK

Personalised recommendations