Skip to main content
Log in

EC–SPE–stripline-NMR analysis of reactive products: a feasibility study

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Flow-through electrochemical conversion (EC) of drug-like molecules was hyphenated to miniaturized nuclear magnetic resonance spectroscopy (NMR) via on-line solid-phase extraction (SPE). After EC of the prominent p38α mitogen-activated protein kinase inhibitor BIRB796 into its reactive products, the SPE step provided preconcentration of the EC products and solvent exchange for NMR analysis. The acquisition of NMR spectra of the mass-limited samples was achieved in a stripline probe with a detection volume of 150 nL offering superior mass sensitivity. This hyphenated EC–SPE–stripline-NMR setup enabled the detection of the reactive products using only minute amounts of substrate. Furthermore, the integration of conversion and detection into one flow setup counteracts incorrect assessments caused by the degradation of reactive products. However, apparent interferences of the NMR magnetic field with the EC, leading to a low product yield, so far demanded relatively long signal averaging. A critical assessment of what is and what is not (yet) possible with this approach is presented, for example in terms of structure elucidation and the estimation of concentrations. Additionally, promising routes for further improvement of EC–SPE–stripline-NMR are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jahn S, Karst U (2012) Electrochemistry coupled to (liquid chromatography/) mass spectrometry—current state and future perspectives. J Chromatogr A 1259:16–49

    Article  CAS  Google Scholar 

  2. Richards JA, Evans DH (1975) Flow cell for electrolysis within probe of a nuclear magnetic-resonance spectrometer. Anal Chem 47(6):964–966

    Article  CAS  Google Scholar 

  3. Albert K, Dreher EL, Straub H, Rieker A (1987) Monitoring electrochemical reactions by C-13 NMR spectroscopy. Magn Reson Chem 25(10):919–922

    Article  CAS  Google Scholar 

  4. Zhang XC, Zwanziger JW (2011) Design and applications of an in situ electrochemical NMR cell. J Magn Reson 208(1):136–147

    Article  CAS  Google Scholar 

  5. Wu JJ, Day JB, Franaszczuk K, Montez B, Oldfield E, Wieckowski A, Vuissoz PA, Ansermet JP (1997) Recent progress in surface NMR-electrochemistry. J Chem Soc Faraday Trans 93(6):1017–1026

    Article  CAS  Google Scholar 

  6. Mairanovsky VG, Yusefovich LY, Filippova TM (1983) NMR electrolysis combined method (NMREL)—basic principles and some applications. J Magn Reson 54(1):19–35

    Google Scholar 

  7. Simon H, Melles D, Jacquoilleot S, Sanderson P, Zazzeroni R, Karst U (2012) Combination of electrochemistry and nuclear magnetic resonance spectroscopy for metabolism studies. Anal Chem 84(20):8777–8782

    Article  CAS  Google Scholar 

  8. Gokay O, Albert K (2012) From single to multiple microcoil flow probe NMR and related capillary techniques: a review. Anal Bioanal Chem 402(2):647–669

    Article  Google Scholar 

  9. Corcoran O, Spraul M (2003) LC-NMR-MS in drug discovery. Drug Discov Today 8(14):624–631

    Article  CAS  Google Scholar 

  10. Baumann A, Karst U (2010) Online electrochemistry/mass spectrometry in drug metabolism studies: principles and applications. Expert Opin Drug Metab Toxicol 6(6):715–731

    Article  CAS  Google Scholar 

  11. Falck D, de Vlieger JSB, Giera M, Honing M, Irth H, Niessen WMA, Kool J (2012) On-line electrochemistry-bioaffinity screening with parallel HR-LC-MS for the generation and characterization of modified p38alpha kinase inhibitors. Anal Bioanal Chem 403(2):367–375

    Article  CAS  Google Scholar 

  12. van Bentum PJM, Janssen JWG, Kentgens APM, Bart J, Gardeniers JGE (2007) Stripline probes for nuclear magnetic resonance. J Magn Reson 189(1):104–113

    Article  Google Scholar 

  13. Bart J, Janssen JWG, van Bentum PJM, Kentgens APM, Gardeniers JGE (2009) Optimization of stripline-based microfluidic chips for high-resolution NMR. J Magn Reson 201(2):175–185

    Article  CAS  Google Scholar 

  14. Bart J, Kolkman AJ, Oosthoek-de Vries AJ, Koch K, Nieuwland PJ, Janssen JWG, van Bentum JPM, Ampt KAM, Rutjes FPTJ, Wijmenga SS, Gardeniers JGE, Kentgens APM (2009) A microfluidic high-resolution NMR flow probe. J Am Chem Soc 131(14):5014–5015

    Article  CAS  Google Scholar 

  15. Eglen RM, Reisine T (2009) The current status of drug discovery against the human kinome. Assay Drug Dev Technol 7(1):22–43

    Article  CAS  Google Scholar 

  16. Kumar S, Boehm J, Lee JC (2003) p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2(9):717–726

    Article  CAS  Google Scholar 

  17. Bax A, Davis DG (1985) MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J Magn Reson 65:355–360

    CAS  Google Scholar 

  18. Aue WP, Karhan J, Ernst RR (1976) Homonuclear broad band decoupling and two-dimensional J-resolved NMR spectroscopy. J Chem Phys 64(10):4226

    Article  CAS  Google Scholar 

  19. van Beek JD (2007) matNMR: a flexible toolbox for processing, analyzing and visualizing magnetic resonance data in Matlab. J Magn Reson 187(1):19–26

    Article  Google Scholar 

  20. Eilers PH (2003) A perfect smoother. Anal Chem 75(14):3631–3636

    Article  CAS  Google Scholar 

  21. http://www.bruker.com/products/mr/nmr/probes/cryoprobes/microcryoprobe/overview.html. Bruker. Accessed 11.03.2013 2013

  22. Malz F, Jancke H (2005) Validation of quantitative NMR. J Pharm Biomed Anal 38(5):813–823

    Article  CAS  Google Scholar 

  23. Kentgens APM, Bart J, van Bentum PJM, Brinkmann A, van Eck ERH, Gardeniers JGE, Janssen JWG, Knijn P, Vasa S, Verkuijlen MHW (2008) High-resolution liquid- and solid-state nuclear magnetic resonance of nanoliter sample volumes using microcoil detectors. J Chem Phys 128(5):052202

    Article  CAS  Google Scholar 

  24. Jansma A, Chuan T, Albrecht RW, Olson DL, Peck TL, Geierstanger BH (2005) Automated microflow NMR: routine analysis of five-microliter samples. Anal Chem 77(19):6509–6515

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed partly within the framework of the Dutch Top Institute Pharma project D2-102 (Metabolic stability assessment as new tool in the Hit-to-Lead selection process and the generation of new lead compound libraries) and partly within the research program ACTS—Process on a Chip (PoaC), financed by the Netherlands Organisation for Scientific Research (NWO). Agnieszka Kraj, Hendrik-Jan Brouwer and Jean-Pierre Chervet (Antec, Zoeterwoude, The Netherlands) are acknowledged for their support of the electrochemistry part of the project. Hans Janssen, Jan van Os, and Jan van Bentum (Radboud University Nijmegen, The Netherlands) are credited for technical and organizational support with regard to setup and ongoing development of the stripline probe. Additionally, Roald Tiggelaar, Jacob Bart and Han Gardeniers (Twente University/Mesoscale Chemical Systems, Enschede, The Netherlands) are acknowledged for their support of the stripline-NMR chip fabrication. Frans J.J. de Kanter and Andreas W. Ehlers are thanked for their input concerning the conventional NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried M. A. Niessen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.32 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falck, D., Oosthoek-de Vries, A.J., Kolkman, A. et al. EC–SPE–stripline-NMR analysis of reactive products: a feasibility study. Anal Bioanal Chem 405, 6711–6720 (2013). https://doi.org/10.1007/s00216-013-7158-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7158-9

Keywords

Navigation