Skip to main content
Log in

X-ray absorption near-edge structure (XANES) spectroscopy identifies differential sulfur speciation in corneal tissue

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The chemical composition of tissues can influence their form and function. As a prime example, the lattice-like arrangement of collagen fibrils required for corneal transparency is controlled, in part, by sulfated proteoglycans, which, via core proteins, bind to the collagen at specific locations along the fibril axis. However, to date, no studies have been able to directly identify and characterize sulfur (S) in the cornea as a function of tissue location. In this study, X-ray absorption near-edge structure spectroscopy and micro-beam X-ray fluorescence (μ-XRF) chemical contrast imaging were employed to probe the nature of the mature (bovine) cornea as a function of position from the anterior sub-epithelial region into the deep stroma. Data indicate an inhomogeneity in the composition of S species in the first ≈50 μm of stromal depth. In μ-XRF chemical contrast imaging, S did not co-localize with phosphorous (P) in the deep stroma where sulfates are prominent. Rather, P is present only as isolated micrometric spots, presumably identifiable as keratocytes. This study lends novel insights into the elemental physiology of mature cornea, especially in relation to its S distribution; future studies could be applied to human tissues. Moreover, it defines an analytical protocol for the interrogation of S species in biological tissues with micrometric resolution.

Sulfur species distribution in corneal tissue. Spatial distribution of S (red) and P (green) extracted from µ-XRF maps of a bovine cornea cut. The incoming X-ray beam energy was tuned in order to enhance the absorption from sulfate (upper map) and thiol/monosulfide (lower map) groups, respectively

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GCF:

Gaussian curve fitting

LCF:

Linear combination fitting

μ-XRF:

Micro-beam X-ray fluorescence

XANES:

X-Ray absorption near-edge structure

ESI-MS/MS:

Electrospray ionization tandem mass spectrometry

References

  1. Komai Y, Ushiki T (1991) The three-dimensional organization of collagen fibrils in the human cornea and sclera. Investig Ophthalmol Vis Sci 32:2244–2258

    CAS  Google Scholar 

  2. Hogan MJ, Alvarado JA, Weddell JE (eds) (1971) The cornea. In: Histology of the human eye. An atlas and textbook. Saunders, Philadelphia

  3. Maurice DM (1957) The structure and transparency of the corneal stroma. J Physiol 136:263–286

    CAS  Google Scholar 

  4. Hart RW, Farrell RA (1969) Light scattering in the cornea. J Opt Soc Am 59:766–774

    Article  CAS  Google Scholar 

  5. Benedek GB (1971) Theory and transparency of the eye. Appl Optics 10:459–473

    Article  CAS  Google Scholar 

  6. Sayers Z, Whitburn SB, Koch MHJ, Meek KM, Elliott GF (1982) Synchrotron X-ray diffraction study of corneal stroma. J Mol Biol 160:593–607

    Article  CAS  Google Scholar 

  7. Worthington CR (1984) The structure of the cornea. Q Rev Biophys 17:423–451

    Article  CAS  Google Scholar 

  8. Worthington CR, Inouye H (1985) X-ray diffraction study of the cornea. Int J Biol Macromol 7:2–8

    Article  CAS  Google Scholar 

  9. Freund DE, McCally RL, Farrell RA (1986) Direct summation of fields for light scattering by fibrils with applications to normal corneas. Appl Optics 25:2739–2746

    Article  CAS  Google Scholar 

  10. Scott JE, Haigh M (1985) 'Small'-proteoglycan:collagen interactions: keratan sulphate proteoglycan associates with rabbit corneal collagen fibrils at the ‘a’ and ‘c’ bands. Biosci Rep 5:765–774

    Article  CAS  Google Scholar 

  11. Meek KM, Elliott GF, Nave C (1986) A synchrotron X-ray diffraction study of bovine cornea stained with cupromeronic blue. Coll Relat Res 6:203–218

    Article  CAS  Google Scholar 

  12. Knupp C, Pinali C, Lewis PN, Parfitt GJ, Young RD, Meek KM, Quantock AJ (2009) The architecture of the cornea and structural basis of its transparency. Adv Prot Chem Struct Biol 78:25–49

    Article  CAS  Google Scholar 

  13. Lewis PN, Pinali C, Young RD, Meek KM, Quantock AJ, Knupp C (2010) Structural interactions between collagen and proteoglycans are elucidated by three-dimensional electron tomography of bovine cornea. Structure 18:239–245

    Article  CAS  Google Scholar 

  14. Parfitt GJ, Pinali C, Young RD, Quantock AJ, Knupp C (2010) Three-dimensional reconstruction of collagen–proteoglycan interactions in the mouse corneal stroma by electron tomography. J Struct Biol 170:392–397

    Article  CAS  Google Scholar 

  15. Bettelheim FA, Plessy B (1975) The hydration of proteoglycans of bovine cornea. Biochim Biophys Acta 381:203–214

    Article  CAS  Google Scholar 

  16. Bettelheim FA, Goetz D (1976) Distribution of hexosamines in bovine cornea. Investig Ophthalmol 15:301–304

    CAS  Google Scholar 

  17. Castoro JA, Bettelheim AA, Bettelheim FA (1988) Water gradients across bovine cornea. Investig Ophthalmol Vis Sci 29:963–968

    CAS  Google Scholar 

  18. Borcherding MS, Blacik LJ, Sittig RA, Bizzell JW, Breen M, Weinstein HG (1975) Proteoglycans and collagen fibre organization in human corneoscleral tissue. Exp Eye Res 21:59–70

    Article  CAS  Google Scholar 

  19. Scott JE, Haigh M, Ali P (1988) Keratan sulphate is unevenly distributed from back to front of bovine cornea. Biochem Soc Trans 16:333–334

    CAS  Google Scholar 

  20. Scott JE, Bosworth TR (1990) A comparative biochemical and ultrastructural study of proteoglycan–collagen interactions in corneal stroma. Biochem J 270:491–497

    CAS  Google Scholar 

  21. Hayashida Y, Akama TO, Beecher N, Lewis P, Young RD, Meek KM, Kerr B, Hughes CE, Caterson B, Tanigami A, Nakayama J, Fukada MN, Tano Y, Nishida K, Quantock AJ (2006) Matrix morphogenesis in cornea is mediated by the modification of keratan sulfate by GlcNAc 6-O sulfotransferase. Proc Natl Acad Sci USA 103:13333–13338

    Article  CAS  Google Scholar 

  22. Young RD, Gealy EC, Liles M, Caterson B, Ralphs JR, Quantock AJ (2007) Keratan sulfate glycosaminoglycan and the association with collagen fibrils in rudimentary lamellae in the developing avian cornea. Investig Ophthalmol Vis Sci 48:3083–3088

    Article  Google Scholar 

  23. Liles M, Palka BP, Harris A, Kerr B, Hughes CE, Young RD, Meek KM, Caterson B, Quantock AJ (2010) Differential relative sulfation of keratan sulfate glycosaminoglycan in the chick cornea during embryonic development. Investig Ophthalmol Vis Sci 51:1365–1372

    Article  Google Scholar 

  24. Zhang Y, Schmack I, Dawson DG, Grossniklaus HE, Conrad AH, Kariya Y, Suzuki K, Edelhauser HF, Conrad GW (2006) Keratan sulfate and chondroitin/dermatan sulfate in maximally recovered hypocellular stromal interface scars of postmortem human LASIK corneas. Investig Ophthalmol Vis Sci 47:2390–2396

    Article  Google Scholar 

  25. Conrad AH, Zhang Y, Walker AR, Olberding LA, Hanzlick A, Zimmer AJ, Morffi R, Conrad GW (2006) Thyroxine affects expression of KSPG-related genes, the carbonic anhydrase II gene, and KS sulfation in the embryonic chicken cornea. Investig Ophthalmol Vis Sci 47:120–132

    Article  Google Scholar 

  26. Pang W, Ahmadzai AA, Patel II, Qiu X, Liles M, Quantock AJ, Martin FL (2012) Alterations in the biomolecular signatures of developing chick corneas as determined by biospectroscopy and multivariate analysis. Invest Ophthalmol Vis Sci 53:1162–1168

    Article  CAS  Google Scholar 

  27. Koudouna E, Veronesi G, Patel II, Cotte M, Knupp C, Martin FL, Quantock AJ (2012) Chemical composition and sulfur speciation in bulk tissue by X-ray spectroscopy and X-ray microscopy: corneal development during embryogenesis. Biophys J 103:357–364

    Article  CAS  Google Scholar 

  28. Xia K, Weesner F, Bleam WF, Bloom PR, Skyllberg UL, Helmke PA (1998) XANES studies of oxidation states of sulfur in aquatic and soil humic substances. Soil Sci Soc Am J 62:1240–1246

    Article  CAS  Google Scholar 

  29. Huffman GP, Mitra S, Huggins FE, Shah N, Vaidya S, Lu F (1991) Quantitative analysis of all major forms of sulfur in coal by X-ray absorption fine structure spectroscopy. Energy Fuel 5:574–581

    Article  CAS  Google Scholar 

  30. Prietzel J, Thieme J, Neuhäusler U, Susini J, Kögel-Knabner I (2003) Speciation of sulphur in soils and soil particles by X-ray spectromicroscopy. Eur J Soil Sci 54:423–433

    Article  CAS  Google Scholar 

  31. Pickering IJ, George GN, Yu EY, Brune DC, Tuschak C, Overmann J, Beatty JT, Prince RC (2001) Analysis of sulfur biochemistry of sulfur bacteria using X-ray absorption spectroscopy. Biochemistry 40:8138–8145

    Article  CAS  Google Scholar 

  32. Bohic S, Murphy K, Paulus W, Cloetens P, Salomé M, Susini J, Double K (2008) Intracellular chemical imaging of the developmental phases of human neuromelanin using synchrotron X-ray microspectroscopy. Anal Chem 80:9557–9566

    Article  CAS  Google Scholar 

  33. Fayard B, Fay N, David G, Doucet J, Melki R (2006) Packing of the prion Ure2p in protein fibrils probed by fluorescence X-ray near-edge structure spectroscopy at sulfur K-edge. J Mol Biol 356:843–849

    Article  CAS  Google Scholar 

  34. Pickering IJ, Sneeden EY, Prince RC, Block E, Harris HH, Hirsch G, George GN (2009) Localizing the chemical forms of sulfur in vivo using x-ray fluorescence spectroscopic imaging: Application to onion (Allium cepa) tissues. Biochemistry 48:6846–6853

    Article  CAS  Google Scholar 

  35. Hackett MJ, Smith ES, Paterson PG, Nichol H, Pickering IJ, George GN (2012) X-Ray absorption spectroscopy at the sulfur K-edge: a new tool to investigate the biochemical mechanism of neurodegeneration. ACS Chem Neurosci 3:178–185

    Article  CAS  Google Scholar 

  36. Wojdyr M (2010) Fityk: a general-purpose peak fitting program. J Appl Crystallogr 43:1126–1128

    Article  CAS  Google Scholar 

  37. Prietzel J, Botzaki A, Tyufekchieva N, Brettholle M, Thieme J, Klysubun W (2011) Sulfur speciation in soil by S K-edge XANES spectroscopy: comparison of spectral deconvolution and linear combination fitting. Environ Sci Technol 45:2878–2886

    Article  CAS  Google Scholar 

  38. Solé VA, Papillon E, Cotte M, Walter P, Susini J (2007) A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta B 62:63–68

    Article  Google Scholar 

  39. Bairaktaris G, Lewis D, Fullwood NJ, Nieduszynski IA, Marcyniuk B, Quantock AJ, Ridgway AEA (1998) An ultrastructural investigation into proteoglycan distribution in human corneas. Cornea 17:396–402

    Article  CAS  Google Scholar 

  40. Gealy CE, Kerr BC, Young RD, Tudor D, Hayes AJ, Hughes CE, Caterson B, Quantock AJ, Ralphs JR (2007) Differential expression of the keratan sulfate proteoglycan, keratocan, during chick corneal embryogenesis. Histochem Cell Biol 128:551–555

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Dr. Rob Young and Ms. Frances Jones for help with specimen preparation, and also acknowledge the ESRF (http://www.esrf.eu) for providing access to synchrotron radiation facilities. This work is supported by a project grant from the UK Engineering and Physical Sciences Research Council (grant number EP/F034970 to AJQ). EK is the recipient of a Cardiff University President's Studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Veronesi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veronesi, G., Koudouna, E., Cotte, M. et al. X-ray absorption near-edge structure (XANES) spectroscopy identifies differential sulfur speciation in corneal tissue. Anal Bioanal Chem 405, 6613–6620 (2013). https://doi.org/10.1007/s00216-013-7120-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7120-x

Keywords

Navigation