Skip to main content
Log in

In-syringe magnetic-stirring-assisted liquid–liquid microextraction for the spectrophotometric determination of Cr(VI) in waters

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A fully automated method for the determination of chromate is described. It is based on the selective reaction of Cr(VI) with diphenylcarbazide in acidic media to form a colored complex of Cr(III) with the oxidation product diphenylcarbazone. The reaction was performed within the syringe of an automatic burette containing a magnetic stirrer for homogenization of the sample and the required reagents. In-syringe stirring was made possible using a specially designed driving device placed around the syringe barrel to achieve a rotating magnetic field in the syringe, forcing the stirrer to spin. In a second step, the reaction mixture in the syringe was neutralized to allow in-syringe magnetic-stirring-assisted dispersive liquid–liquid microextraction of the complex into 125 μL of n-hexanol. After phase separation by droplet flotation over 30 s, the organic phase was propelled into a coupled spectrophotometric detection cell. The entire multistep procedure including in-system standard preparation was done within 270 s. The method was used for the analysis of natural waters, achieving average analyte recovery of 103 %, a limit of detection of 0.26 μg L-1, and a repeatability of less than 4 % relative standard deviation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pena-Pereira F, Lavilla I, Bendicho C (2009) Spectrochim Acta B At Spectrosc 64(1):1–15

    Article  Google Scholar 

  2. Silvestre CIC, Santos JLM, Lima JLFC, Zagatto EAG (2009) Anal Chim Acta 652(1–2):54–65

    Article  CAS  Google Scholar 

  3. Chen W, Zhong GP, Zhou ZD, Wu P, Hou XD (2005) Anal Sci 21(10):1189–1193

    Article  CAS  Google Scholar 

  4. Rezaee M, Assadi Y, Milani Hosseini M-R, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogr A 1116(1–2):1–9

    CAS  Google Scholar 

  5. Rezaee M, Yamini Y, Faraji M (2010) J Chromatogr A 1217(16):2342–2357

    Article  CAS  Google Scholar 

  6. Kocúrová L, Balogh IS, Šandrejová J, Andruch V (2012) Microchem J 102:11–17

    Article  Google Scholar 

  7. Anthemidis AN, Ioannou K-IG (2011) Talanta 84(5):1215–1220

    Article  CAS  Google Scholar 

  8. Maya F, Estela JM, Cerdá V (2012) Anal Bioanal Chem 402:1383–1388

    Article  CAS  Google Scholar 

  9. Anthemidis AN, Ioannou K-IG (2009) Talanta 80(2):413–421

    Article  CAS  Google Scholar 

  10. Suárez R, Horstkotte B, Duarte CM, Cerdà V (2012) Anal Chem 84:9462–9469

    Google Scholar 

  11. Horstkotte B, Alexovič M, Maya F, Duarte CM, Andruch V, Cerdá V (2012) Talanta 99:349–356

    Article  CAS  Google Scholar 

  12. Farajzadeh MA, Mogaddam MRA (2012) Anal Chim Acta 728:31–38

    Article  CAS  Google Scholar 

  13. Saleh A, Yamini Y, Faraji M, Rezaee M, Ghambarian M (2009) J Chromatogr A 1216(39):6673–6679

    Article  CAS  Google Scholar 

  14. Yan H, Wang H, Qin X, Liu B, Du J (2011) J Pharm Biomed Anal 54(1):53–57

    Article  CAS  Google Scholar 

  15. Zhang Y, Lee HK (2012) J Chromatogr A 1249:25–31

    Article  CAS  Google Scholar 

  16. Zhang P-P, Shi Z-G, Yu Q-W, Feng Y-Q (2011) Talanta 83(5):1711–1715

    Article  CAS  Google Scholar 

  17. Skrlikova J, Andruch V, Sklenarova H, Chocholous P, Solich P, Balogh IS (2010) Anal Methods (2):1134–1139

  18. Horstkotte B, Suarez R, Solich P, Cerdà V (2013) Anal Chim Acta. http://dx.doi.org/10.1016/j.aca.2013.05.049

  19. World Health Organization (1990) World Health Organization (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva. ISBN: 978 92 4 154815 1

  20. Gómez V, Callao MP (2006) Trends Anal Chem 25(10):1006–1015

    Article  Google Scholar 

  21. Silva PS (2011) Guidance for public water systems on enhanced monitoring for chromium-6 (hexavalent chromium) in drinking water. Environmental Protection Agency, Washington

    Google Scholar 

  22. World Heath Organization (2011) Guidelines for drinking-water quality, vol WA 675, 4th edn. World Heath Organization, Geneva

    Google Scholar 

  23. Cazeneuve MP (1900) Bull Soc Chim Fr 23:701–706

    Google Scholar 

  24. Babko AK, Paulii LA (1950) Zh Anal Khim 5:201

    Google Scholar 

  25. Bose M (1954) Anal Chim Acta 10:201–209

    Article  CAS  Google Scholar 

  26. Pflaum RT, Howick LC (1956) J Am Chem Soc 78:4862–4866

    Article  CAS  Google Scholar 

  27. Majidi B, Shemirani F (2012) Microchim Acta 176(1–2):143–151. doi:10.1007/s00604-011-0711-3

    CAS  Google Scholar 

  28. Salinas-Hernández P, Rojas-Hernández A, Ramı́rez-Silva MT (2003) Spectrochim Acta A Mol Biomol Spectrosc 59(11):2667–2675

    Article  Google Scholar 

  29. Franson MAH, Clesceri LS, Greenberg AE, Rhodes Trussell R (eds) (1992) Métodos normalizados para el análisis de aguas potables y residuales APHA, AWWA, WPCF

  30. Becerra E, Cladera A, Cerda V (1999) Lab Robot Autom 11(3):131–140

    Article  CAS  Google Scholar 

  31. Cerdà A, Cerdà V (2009) An introduction to flow analysis. Sciware Systems S.L., Barcelona

  32. Luo Y, Nakano S, Holman DA, Ruzicka J, Christian GD (1997) Talanta 44(9):1563–1571

    Article  CAS  Google Scholar 

  33. Leong M-I, Huang S-D (2008) J Chromatogr A 1211(1–2):8–12

    CAS  Google Scholar 

  34. Herrera-Herrera AV, Asensio-Ramos M, Hernández-Borges J, Rodríguez-Delgado MÁ (2010) Trends Anal Chem 29(7):728–751

    Article  CAS  Google Scholar 

  35. Dadfarnia S, Haji Shabani AM (2010) Anal Chim Acta 658(2):107–119

    Article  CAS  Google Scholar 

  36. Thompson M, Ellison SLR, Wood R (2002) Pure Appl Chem 74(5):835–855

    Article  CAS  Google Scholar 

  37. Castilleja-Rivera WL, Hinojosa-Reyes L, Guzmán-Mar JL, Hernández-Ramírez A, Ruíz-Ruíz E, Cerdà V (2012) Talanta 99:730–736

    Article  CAS  Google Scholar 

  38. Ma J, Yang B, Byrne RH (2012) J Hazard Mater 219–220:247–252

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Spanish Ministry of Science and Innovation through the project CTQ2010-15541 and from the Conselleria d’Economia, Hacienda, e Innovació of the Government of the Balearic Islands through the allowance to competitive groups (43/2011) through Feder Funds. C.H. is very grateful to the Conselleria d´Educació, Cultura I Universitat, and the European Social Fund for funding her PhD grant. B.H. was supported by a postdoctoral fellowship of the project CZ.1.07/2.3.00/30.0022 supported by the Education for Competitiveness Operational Program and co-financed by the European Social Fund and the state budget of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Cerdà.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 283 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henríquez, C., Horstkotte, B., Solich, P. et al. In-syringe magnetic-stirring-assisted liquid–liquid microextraction for the spectrophotometric determination of Cr(VI) in waters. Anal Bioanal Chem 405, 6761–6769 (2013). https://doi.org/10.1007/s00216-013-7111-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7111-y

Keywords

Navigation