Skip to main content
Log in

A photoinduced electron transfer-based nanoprobe as a marker of acidic organelles in mammalian cells

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Photoinduced electron transfer (PET)-based molecular probes have been successfully used for the intracellular imaging of the pH of acidic organelles. In this study, we describe the synthesis and characterization of a novel PET-based pH nanoprobe and its biological application for the signaling of acidic organelles in mammalian cells. A fluorescent ligand sensitive to pH via the PET mechanism that incorporates a thiolated moiety was synthesized and used to stabilize gold nanoparticles (2.4 ± 0.6 nm), yielding a PET-based nanoprobe. The PET nanoprobe was unambiguously characterized by transmission electron microscopy, proton nuclear magnetic resonance, Fourier transform infrared, ultraviolet-visible absorption, and steady-state/time-resolved fluorescence spectroscopies which confirmed the functionalization of the gold nanoparticles with the PET-based ligand. Following a classic PET behavior, the fluorescence emission of the PET-based nanoprobe was quenched in alkaline conditions and enhanced in an acidic environment. The PET-based nanoprobe was used for the intracellular imaging of acidic environments within Chinese hamster ovary cells by confocal laser scanning microscopy. The internalization of the nanoparticles by the cells was confirmed by confocal fluorescence images and also by recording the fluorescence emission spectra of the intracellular PET-based nanoprobe from within the cells. Co-localization experiments using a marker of acidic organelles, LysoTracker Red DND-99, and a marker of autophagosomes, GFP-LC3, confirm that the PET-based nanoprobe acts as marker of acidic organelles and autophagosomes within mammalian cells.

A PET based ligand has been used to functionalize gold nanoparticles to develop a pH sensitive nanoprobe. The fluorescence of the nanoprobe, following the PET mechanism, is enhanced in acidic environments and quenched at neutral pH. A combination of spectroscopy and confocal fluorescence microscopy is used for confirmation of the cellular uptake of the nanoprobe by Chinese hamster ovary cells. The PET-based nanoprobe has been used as a marker of acidic organelles and autophagosomes within the CHO cells

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Callan JF, de Silva AP, Magri DC (2005) Luminescent sensors and switches in the early 21st century. Tetrahedron 61:8551–8588

    Article  CAS  Google Scholar 

  2. Chen X, Tian X, Shin I, Yoon J (2011) Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev 40(9):4783–4804

    Article  CAS  Google Scholar 

  3. Domaille DW, Que EL, Chang CJ (2008) Synthetic fluorescent sensors for studying the cell biology of metals. Nat Chem Biol 4(3):168–75

    Article  CAS  Google Scholar 

  4. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging. Chem Rev 110(5):2620–2640

    Article  CAS  Google Scholar 

  5. Nagano T (2009) Bioimaging Probes for Reactive Oxygen Species and Reactive Nitrogen Species. J Clin Biochem Nutr 45(2):111–124

    Article  CAS  Google Scholar 

  6. Nagano T (2010) Development of fluorescent probes for bioimaging applications. Proceedings of the Japan Academy. Series B, Physical and biological sciences 86(8):837–47

    Article  CAS  Google Scholar 

  7. Terai T, Nagano T (2008) Fluorescent probes for bioimaging applications. Curr Opin Chem Biol 12(5):515–521

    Article  CAS  Google Scholar 

  8. Bissell RA, de Silva AP, Gunaratne HQN, Lynch PLM, Maguire GEM, Sandanayake K (1992) Molecular fluorescent signaling with fluor spacer receptor systems - approaches to sensing and switching devices via supramolecular photophysics. Chem Soc Rev 21(3):187–195

    Article  CAS  Google Scholar 

  9. de Silva AP, Gunaratne HQ, Gunnlaugsson T, Huxley AJ, McCoy CP, Rademacher JT, Rice TE (1997) Signaling Recognition Events with Fluorescent Sensors and Switches. Chem Rev 97(5):1515–1566

    Article  Google Scholar 

  10. de Silva AP, Moody TS, Wright GD (2009) Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools. Analyst 134(12):2385–2393

    Article  Google Scholar 

  11. Wang YC, Morawetz H (1976) Studies of Intramolecular Excimer Formation in Dibenzyl Ether, Dibenzylamine, and its Derivatives. J Am Chem Soc 98(12):3611–3615

    Article  CAS  Google Scholar 

  12. de Silva AP, Vance TP, West ME, Wright GD (2008) Bright molecules with sense, logic, numeracy and utility. Org Biomol Chem 6(14):2468–80

    Article  Google Scholar 

  13. Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11(1):50–61

    Article  CAS  Google Scholar 

  14. Haas A (2007) The phagosome: Compartment with a license to kill. Traffic 8:311–330

    Article  CAS  Google Scholar 

  15. Schindler M, Grabski S, Hoff E, Simon SM (1996) Defective pH regulation of acidic compartments in human breast cancer cells (MCF-7) is normalized in adriamycin-resistant cells (MCF-7adr). Biochemistry 35(9):2811–7

    Article  CAS  Google Scholar 

  16. Piwon N, Gunther W, Schwake M, Bosl MR, Jentsch TJ (2000) ClC-5 Cl–channel disruption impairs endocytosis in a mouse model for Dent's disease. Nature 408(6810):369–373

    Article  CAS  Google Scholar 

  17. Futerman AH, van Meer G (2004) The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 5(7):554–565

    Article  CAS  Google Scholar 

  18. Parkinson-Lawrence EJ, Shandala T, Prodoehl M, Plew R, Borlace GN, Brooks DA (2010) Lysosomal Storage Disease: Revealing Lysosomal Function and Physiology. Physiology 25(2):102–115

    Article  CAS  Google Scholar 

  19. Han J, Burgess K (2010) Fluorescent Indicators for Intracellular pH. Chem Rev 110(5):2709–2728

    Article  CAS  Google Scholar 

  20. de Silva AP, Rupasinghe R (1985) A New Class of Fluorescent pH Indicators Based on Photoinduced Electron-Transfer. J Chem Soc Chem Commun 23:1669–1670

    Article  Google Scholar 

  21. Johnson I, Spence MTZ (2010) Molecular probes handbook: a guide to fluorescent probes and labeling technologies, 11th edn. Life Technologies, Carlsbad

    Google Scholar 

  22. Diwu ZJ, Chen CS, Zhang CL, Klaubert DH, Haugland RP (1999) A novel acidotropic pH indicator and its potential application in labeling acidic organelles of live cells. Chem Biol 6(7):411–418

    Article  CAS  Google Scholar 

  23. Galindo F, Burguete MI, Vigara L, Luis SV, Kabir N, Gavrilovic J, Russell DA (2005) Synthetic macrocyclic peptidomimetics as tunable pH probes for the fluorescence imaging of acidic organelles in live cells. Angew Chem Int Ed 44(40):6504–8

    Article  CAS  Google Scholar 

  24. Burguete MI, Galindo F, Izquierdo MA, O'Connor JE, Herrera G, Luis SV, Vigara L (2010) Synthesis and Evaluation of Pseudopeptidic Fluorescence pH Probes for Acidic Cellular Organelles: In Vivo Monitoring of Bacterial Phagocytosis by Multiparametric Flow Cytometry. Eur J Org Chem 2010(31):5967–5979

    Article  Google Scholar 

  25. Urano Y, Asanuma D, Hama Y, Koyama Y, Barrett T, Kamiya M, Nagano T, Watanabe T, Hasegawa A, Choyke PL, Kobayashi H (2009) Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nature Medicine 15(1):104–109

    Article  CAS  Google Scholar 

  26. Tang B, Liu X, Xu K, Huang H, Yang G, An L (2007) A dual near-infrared pH fluorescent probe and its application in imaging of HepG2 cells. Chem Commun 36:3726–3728

    Article  Google Scholar 

  27. De M, Ghosh PS, Rotello VM (2008) Applications of Nanoparticles in Biology. Adv Mater 20(20):1–17

    Google Scholar 

  28. Coto-García AM, Sotelo-González E, Fernández-Argüelles MT, Pereiro R, Costa-Fernández JM, Sanz-Medel A (2011) Nanoparticles as fluorescent labels for optical imaging and sensing in genomics and proteomics. Anal Bioanal Chem 399(1):29–42

    Article  Google Scholar 

  29. Lee D-E, Koo H, Sun I-C, Ryu JH, Kim K, Kwon IC (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41(7):2656–2672

    Article  CAS  Google Scholar 

  30. Ruedas-Rama MJ, Walters JD, Orte A, Hall EAH (2012) Fluorescent nanoparticles for intracellular sensing: A review. Anal Chim Acta 751:1–23

    Article  CAS  Google Scholar 

  31. Wilson R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37(9):2028–45

    Article  CAS  Google Scholar 

  32. Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37(9):1896–1908

    Article  CAS  Google Scholar 

  33. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782

    Article  CAS  Google Scholar 

  34. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold Nanoparticles for Biology and Medicine. Angew Chem Int Ed 49(19):3280–3294

    Article  CAS  Google Scholar 

  35. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold Nanoparticles in Chemical and Biological Sensing. Chem Rev 112(5):2739–2779

    Article  CAS  Google Scholar 

  36. Marín MJ, Galindo F, Thomas P, Russell DA (2012) Localized Intracellular pH Measurement Using a Ratiometric Photoinduced Electron-Transfer-Based Nanosensor. Angew Chem Int Ed 51(38):9657–9661

    Article  Google Scholar 

  37. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. (1994) Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System. J Chem Soc Chem Comm 801–802

  38. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  CAS  Google Scholar 

  39. Krpetic Z, Nativo P, Porta F, Brust M (2009) A Multidentate Peptide for Stabilization and Facile Bioconjugation of Gold Nanoparticles. Bioconjugate Chemistry 20(3):619–624

    Article  CAS  Google Scholar 

  40. Porta F, Krpetic Z, Prati L, Gaiassi A, Scari G (2008) Gold-ligand interaction studies of water-soluble aminoalcohol capped gold nanoparticles by NMR. Langmuir 24(14):7061–4

    Article  CAS  Google Scholar 

  41. Schneider G, Decher G, Nerambourg N, Praho R, Werts MH, Blanchard-Desce M (2006) Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes. Nano Letters 6(3):530–6

    Article  CAS  Google Scholar 

  42. Lim SY, Kim JH, Lee JS, Park CB (2009) Gold Nanoparticle Enlargement Coupled with Fluorescence Quenching for Highly Sensitive Detection of Analytes. Langmuir 25(23):13302–13305

    Article  CAS  Google Scholar 

  43. Hong R, Han G, Fernández JM, Kim BJ, Forbes NS, Rotello VM (2006) Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J Am Chem Soc 128(4):1078–9

    Article  CAS  Google Scholar 

  44. Tu Y, Wu P, Zhang H, Cai C (2012) Fluorescence quenching of gold nanoparticles integrating with a conformation-switched hairpin oligonucleotide probe for microRNA detection. Chem Commun 48(87):10718–10720

    Article  CAS  Google Scholar 

  45. Bardhan R, Grady NK, Cole JR, Joshi A, Halas NJ (2009) Fluorescence Enhancement by Au Nanostructures: Nanoshells and Nanorods. ACS Nano 3(3):744–752

    Article  CAS  Google Scholar 

  46. Teixeira R, Paulo PMR, Viana AS, Costa SMB (2011) Plasmon-Enhanced Emission of a Phthalocyanine in Polyelectrolyte Films Induced by Gold Nanoparticles. J Phys Chem C 115(50):24674–24680

    Article  CAS  Google Scholar 

  47. Kang KA, Wang J, Jasinski JB, Achilefu S (2011) Fluorescence Manipulation by Gold Nanoparticles: From Complete Quenching to Extensive Enhancement. Journal of Nanobiotechnology 9:16

    Article  CAS  Google Scholar 

  48. Marín MJ, Thomas P, Fabregat V, Luis SV, Russell DA, Galindo F (2011) Fluorescence of 1,2-Diaminoanthraquinone and its Nitric Oxide Reaction Product within Macrophage Cells. ChemBioChem 12(16):2471–2477

    Article  Google Scholar 

  49. Klionsky DJ, Emr SD (2000) Cell biology - Autophagy as a regulated pathway of cellular degradation. Science 290(5497):1717–1721

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the School of Chemistry, University of East Anglia for a studentship for M.J.M. F.G. acknowledges the financial support of the Spanish MICINN (project number CTQ2009-09953) and the Fundació Caixa Castelló-Bancaixa (project number P1·1B2012-41). The authors are grateful to Dr. Colin McDonald (School of Chemistry, University of East Anglia) for the assistance with the TEM images.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francisco Galindo or David A. Russell.

Additional information

Published in the topical collection Optical Nanosensing in Cells with guest editor Francesco Baldini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 172 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marín, M.J., Galindo, F., Thomas, P. et al. A photoinduced electron transfer-based nanoprobe as a marker of acidic organelles in mammalian cells. Anal Bioanal Chem 405, 6197–6207 (2013). https://doi.org/10.1007/s00216-013-6905-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6905-2

Keywords

Navigation