Skip to main content
Log in

Comprehensive analysis of ß-lactam antibiotics including penicillins, cephalosporins, and carbapenems in poultry muscle using liquid chromatography coupled to tandem mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A comprehensive method for the quantitative residue analysis of trace levels of 22 ß-lactam antibiotics, including penicillins, cephalosporins, and carbapenems, in poultry muscle by liquid chromatography in combination with tandem mass spectrometric detection is reported. The samples analyzed for ß-lactam residues are hydrolyzed using piperidine in order to improve compound stability and to include the total residue content of the cephalosporin ceftifour. The reaction procedure was optimized using a full experimental design. Following detailed isotope labeling, tandem mass spectrometry studies and exact mass measurements using high-resolution mass spectrometry reaction schemes could be proposed for all ß-lactams studied. The main reaction occurring is the hydrolysis of the ß-lactam ring under formation of the piperidine substituted amide. For some ß-lactams, multiple isobaric hydrolysis reaction products are obtained, in accordance with expectations, but this did not hamper quantitative analysis. The final method was fully validated as a quantitative confirmatory residue analysis method according to Commission Decision 2002/657/EC and showed satisfactory quantitative performance for all compounds with trueness between 80 and 110 % and within-laboratory reproducibility below 22 % at target level, except for biapenem. For biapenem, the method proved to be suitable for qualitative analysis only.

Graphical representation of the analysis of penicillins, cephalosporins and carbapenems using LC-MS/MS

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fernandes R, Amador P, Prudêncio C (2013) ß-lactams: chemical structure, mode of action and mechanisms of resistance. Rev Med Microbiol. 24(1):7–17. doi:10.1097/MRM.0b013e3283587727

    Google Scholar 

  2. Hare R (1982) New light on the history of penicillin. Med His 26:1–24

    Article  CAS  Google Scholar 

  3. Kong K-F, Schneper L, Mathee K (2010) Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS 118:1–36

    Article  CAS  Google Scholar 

  4. Reeves PT (2012) In: Wang J, MacNeil JD, Kay JF (eds) Chemical analysis of antibiotic residues in food. Wiley, Hoboken, NJ, pp 1–60

  5. Oliver SP, Murinda SE, Jayarao BM (2011) Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: a comprehensive review. Foodborne Pathog Dis 8:337–355

    Article  CAS  Google Scholar 

  6. 37/2010/EU (2010) Commission Regulation EU/37/2010 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off J Eur Comm L15:1–72

    Google Scholar 

  7. Abraham EP, Newton GGF (1961) The structure of cephalosporin C. Biochem J 79:377–393

    CAS  Google Scholar 

  8. Hornish RE (2002) Cephalosporins in veterinary medicine—ceftiofur use in food animals. Curr Top Med Chem 2(7):717–731

    Article  CAS  Google Scholar 

  9. Nagarajan R, Boeck LD, Gorman M, Hamill RL, Higgins CE, Hoehn MM, Stark W, Whitney JG (1971) Beta-lactam antibiotics from Streptomyces. J Am Chem Soc 93:2308–2310

    Article  CAS  Google Scholar 

  10. Nordmann P, Dortet L, Poirel L (2012) Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med 18:263–272

    Article  CAS  Google Scholar 

  11. Mushtaq S, Hope R, Warner M, Livermore DM (2007) Activity of faropenem against cephalosporin-resistant Enterobacteriaceae. J Antimicrob Chemother 59:1025–1030

    Article  CAS  Google Scholar 

  12. Hasman H, Mevius D, Veldman K, Olesen I, Aarestrup FM (2005) ß-lactamases among extended-spectrum ß-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in the Netherlands. J Antimicrob Chemother 56:115–121

    Article  CAS  Google Scholar 

  13. Hur J, Jawale C, Lee JH (2012) Antimicrobial resistance of Salmonella isolated from food animals: a review. Food Res Int 45:819–830

    Article  CAS  Google Scholar 

  14. Pfeifer Y, Cullik A, Witte W (2010) Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int J Med Microbiol 300:371–379

    Article  CAS  Google Scholar 

  15. Persoons D, Haesebrouck F, Smet A, Herman L, Heyndrickx M, Martel A, Catry B, Berge AC, Butaye P, Dewulf J (2011) Risk factors for ceftiofur resistance in Escherichia coli from Belgian broilers. Epidemiol Infect 139:765–771

    Article  CAS  Google Scholar 

  16. Chander Y, Oliveira S, Goyal SM (2011) Characterisation of ceftiofur resistance in swine bacterial pathogens. Vet J 187:139–141

    Article  CAS  Google Scholar 

  17. Franciolli M, Bille J, Glauser MP, Moreillon P (1991) ß-lactam resistance mechanisms of methicillin-resistant Staphylococcus aureus. J Infect Dis 163:514–523

    Article  CAS  Google Scholar 

  18. Orrett FA, Shurland SM (1996) Production of ß-lactamase in Trinidad: an association with multiple resistances to ß-lactam antibiotics. Med Sci Res 24:519–522

    CAS  Google Scholar 

  19. Jones RN (2001) Resistance patterns among nosocomial pathogens: trends over the past few years. Chest 119:397S–404S

    Article  CAS  Google Scholar 

  20. World Health Organization (2007) Critically important antimicrobials for human health: categorization for the development of risk management strategies to contain antimicrobial resistance due to non-human antimicrobial use. Report on the Second WHO expert meeting, Copenhagen, May 2007

  21. Wittum TE (2007) Agricultural ceftiofur use and the dissemination of bacterial resistance: genes of public health concern. Western Dairy News 7:W-51

    Google Scholar 

  22. European Medicine Agency (2009) EMEA/V/C/000079, Scientific discussion for the assessment of Naxcel. European Medicines Agency

  23. Dutil L, Irwin R, Finley R, Ng LK, Avery B, Boerlin P, Bourgault A, Cole L, Daignault D, Desruisseau A, Demczuk W, Hoang L, Horsman GB, Ismail J, Jamieson F, Maki A, Pacagnella A, Pillai DR (2010) Ceftiofur resistance in Salmonella enterica serovar Heidelberg from chicken meat and humans, Canada. Emerg Infect Dis 16(1):48–54

    Article  Google Scholar 

  24. Ewers C, Grobbel M, Stamm I, Kopp PA, Diehl I, Semmler T, Fruth A, Beutlich J, Guerra B, Wieler LH, Guenther S (2010) Emergence of human pandemic O25:H4-ST131 CTX-M-15 extended-spectrum-ß-lactamase-producing Escherichia coli among companion animals. J Antimicrob Chemother 65:651–660

    Article  CAS  Google Scholar 

  25. Stürenburg E, Mack D (2003) Extended-spectrum β-lactamases: implications for the clinical microbiology laboratory, therapy, and infection control. J Infect 47:273–295

    Article  Google Scholar 

  26. Dahmen S, Mansour W, Charfi K, Boujaafar N, Arlet G, Bouallègue O (2012) Imipenem resistance in Klebsiella pneumoniae is associated to the combination of plasmid-mediated CMY-4 AmpC β-lactamase and loss of an outer membrane protein. Microb Drug Resist 18:479–483

    Article  CAS  Google Scholar 

  27. Hawkey PM, Livermore DM (2012) Carbapenem antibiotics for serious infections. BMJ 344:e3236

    Article  Google Scholar 

  28. Wittum TE (2012) The challenge of regulating agricultural ceftiofur use to slow the emergence of resistance to extended-spectrum cephalosporins. App Environ Microbiol 78:7819–7821

    Article  CAS  Google Scholar 

  29. Wegener HC, Aarestrup FM, Gerner-Smidt P, Bager F (1999) Transfer of antibiotic resistance bacteria from animals to man. Acta Vet Scand Suppl 92:51–57

    CAS  Google Scholar 

  30. Bondt N, Puister L, Ge L, van der Veen H, Bergevoet R, Douma B, van Vliet A, Wehling K (2012) Trends in veterinary antibiotic use in the Netherlands 2005–2011. LEI, Wageningen UR, Wageningen

    Google Scholar 

  31. Lara FJ, del Olmo-Iruela M, Cruces-Blanco C, Quesada-Molina C, García-Campaña AM (2012) Advances in the determination of β-lactam antibiotics by liquid chromatography. TrAC Trend Anal Chem 38:52–66

    Article  CAS  Google Scholar 

  32. van Holthoon F, Mulder P, van Bennekom E, Heskamp H, Zuidema T, van Rhijn H (2010) Quantitative analysis of penicillins in porcine tissues, milk and animal feed using derivatisation with piperidine and stable isotope dilution liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 396:3027–3040

    Article  Google Scholar 

  33. Samanidou VF, Nisyriou SA, Papadoyannis IN (2007) Development and validation of an HPLC method for the determination of penicillin antibiotics residues in bovine muscle according to the European Union Decision 2002/657/EC. J Sep Sci 30:3193–3201

    Article  CAS  Google Scholar 

  34. Goto T, Ito Y, Yamada S, Matsumoto H, Oka H (2005) High-throughput analysis of tetracycline and penicillin antibiotics in animal tissues using electrospray tandem mass spectrometry with selected reaction monitoring transition. J Chromatogr A 1100:193–199

    Article  CAS  Google Scholar 

  35. Rezende CP, Almeida MP, Brito RB, Nonaka CK, Leite MO (2011) Optimisation and validation of a quantitative and confirmatory LC-MS method for multi-residue analyses of β-lactam and tetracycline antibiotics in bovine muscle. Food Add Contam A 29:541–549

    Article  Google Scholar 

  36. Macarov CA, Tong L, Martínez-Huélamo M, Hermo MP, Chirila E, Wang YX, Barrón D, Barbosa J (2012) Multi residue determination of the penicillins regulated by the European Union, in bovine, porcine and chicken muscle, by LC–MS/MS. Food Chem 135:2612–2621

    Article  CAS  Google Scholar 

  37. Fagerquist CK, Lightfield AR (2003) Confirmatory analysis of beta-lactam antibiotics in kidney tissue by liquid chromatography/electrospray ionization selective reaction monitoring ion trap tandem mass spectrometry. Rapid Commun Mass Spectrom 17:660–671

    Article  CAS  Google Scholar 

  38. Becker M, Zittlau E, Petz M (2004) Residue analysis of 15 penicillins and cephalosporins in bovine muscle, kidney and milk by liquid chromatography–tandem mass spectrometry. Anal Chim Acta 520:19–32

    Article  CAS  Google Scholar 

  39. Fagerquist CK, Lightfield AR, Lehotay SJ (2005) Confirmatory and quantitative analysis of ß-lactam antibiotics in bovine kidney tissue by dispersive solid-phase extraction and liquid chromatography tandem mass spectrometry. Anal Chem 77:1473–1482

    Article  CAS  Google Scholar 

  40. Mastovska K, Lightfield AR (2008) Streamlining methodology for the multiresidue analysis of ß-lactam antibiotics in bovine kidney using liquid chromatography–tandem mass spectrometry. J Chromatogr A 1202:118–123

    Article  CAS  Google Scholar 

  41. Berendsen BJA, Stolker LAM, Nielen MWF (2011) Assessment of liquid chromatography–tandem mass spectrometry approaches for the analysis of ceftiofur metabolites in poultry muscle. Food Add Contam A 29:197–207

    Article  Google Scholar 

  42. 2002/657/EC (2002) Commission Decision 2002/657/EC of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Official Journal of the European Communities L221:8–36

    Google Scholar 

  43. Horwitz W, Kamps LR, Boyer KW (1980) Quality assurance in the analysis of foods and trace constituents. J Assoc Off Anal Chem 63:1344–1354

    CAS  Google Scholar 

  44. Thompson M (2000) Recent trends in inter-laboratory precision at ppb and sub-ppb concentrations in relation to fitness for purpose criteria in proficiency testing. Analyst 125:385–386

    Article  CAS  Google Scholar 

  45. BS ISO 11843-7:2012 (2012) Capability of detection

  46. Berendsen BJA, Stolker AAM, Nielen WMF (2013) The (un)certainty of selectivity in liquid chromatography coupled to tandem mass spectrometry. J Am Soc Mass Spectrom. 24(1):154–163. doi:10.1007/s13361-012-0501-0

    Google Scholar 

  47. Berendsen BJA, Elbers IJW, Stolker AAM (2011) Determination of the stability of antibiotics in matrix and reference solutions using a straightforward procedure applying mass spectrometric detection. Food Add Contam A 28:1657–1666

    CAS  Google Scholar 

  48. Llinás A, Page MI (2004) Intramolecular general acid catalysis in the aminolysis of ß-lactam antibiotics. Org Biomol Chem 2:651–654

    Article  Google Scholar 

  49. Alexander RP, Bates RW, Pratt AJ, Kraunsoe JAE (1996) AN-nitrosochloroethyl-cephalosporin carbamate prodrug for antibody-directed enzyme prodrug therapy (ADEPT). Tetrahedron 52:5983–5988

    Article  CAS  Google Scholar 

  50. Sugimoto A, Yamano J, Yasueda M, Yoneda S (1988) Preparation and chemical behaviour of exo-methylene compounds: isoelectronic compounds of 5-methylenecyclohexa-1,3-diene. J Chem Soc Perk T 1:2579–2584

    Google Scholar 

  51. Padwa A, Carter SP, Chiacchio U, Kline DN, Perumattam J (1988) Alkylation studies of 5-exo-methylene substituted isoxazolidines. J Chem Soc Perk T 1:2639–2646

    Google Scholar 

  52. Fessenden RJ, Fessenden JS (1994) Organic chemistry. Wadsworth Inc., Belmont, CA

    Google Scholar 

  53. Kim A, Bae H, Park S, Park S, Park K (2011) Silver nanoparticle catalyzed selective hydration of nitriles to amides in water under neutral conditions. Catal Lett 141:685–690

    Article  CAS  Google Scholar 

  54. Cielecka-Piontek J, Jelińska A (2011) Catalytic effect of buffers on the degradation of doripenem in aqueous solutions. React Kinet Mech Catal 102:37–47

    Article  CAS  Google Scholar 

  55. Pierpoint AC, Hapeman CJ, Torrents A (1997) Kinetics and mechanism of amitraz hydrolysis. J Agric Food Chem 45:1937–1939

    Article  CAS  Google Scholar 

  56. American Chemical Society SciFinder. https://scifinder-cas-org.ezproxy.library.wur.nl/scifinder/view/scifinder/scifinderExplore.jsf. Accessed 26 November 2012

Download references

Acknowledgments

This project was financially supported by the Dutch Ministry of Economic affairs (project 1217261301). We thank Dr. Ton Marcelis for his assistance in the elucidation of the hydrolysis reactions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjorn J. A. Berendsen.

Additional information

Published in the topical collection Rapid Detection in Food and Feed with guest editors Rudolf Krska and Michel Nielen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 610 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berendsen, B.J.A., Gerritsen, H.W., Wegh, R.S. et al. Comprehensive analysis of ß-lactam antibiotics including penicillins, cephalosporins, and carbapenems in poultry muscle using liquid chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem 405, 7859–7874 (2013). https://doi.org/10.1007/s00216-013-6804-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6804-6

Keywords

Navigation