Analytical and Bioanalytical Chemistry

, Volume 405, Issue 8, pp 2443–2449 | Cite as

Screening interaction between ochratoxin A and aptamers by fluorescence anisotropy approach

  • Xia Geng
  • Dapeng Zhang
  • Hailin Wang
  • Qiang ZhaoEmail author
Original Paper
Part of the following topical collections:
  1. ABC Highlights: authored by Rising Stars and Top Experts


By taking advantage of the intrinsic fluorescence of ochratoxin A (OTA), we present a fluorescence anisotropy approach for rapid analysis of the interactions between OTA and aptamers. The specific binding of OTA with a 36-mer aptamer can induce increased fluorescence anisotropy (FA) of OTA as the result of the freedom restriction of OTA and the increase of molecular volume, and the maximum FA change is about 0.160. This FA approach enables an easy way to investigate the effects of buffer compositions like metal ions on the affinity binding. FA analysis shows the interaction between OTA and aptamer is greatly enhanced by the simultaneous presence of Ca2+ and Na+, while the binding affinity of aptamer decreases more than 18-fold when only Ca2+ exists, and the binding is completely lost when Ca2+ is absent. Crucial region of the aptamer for binding can be mapped through FA analysis and aptamer mutation. The demonstrated FA approach maintains the advantages of FA in simplicity, rapidity, and robustness. This investigation will help the development of aptamer-based assays for OTA detection in optimizing the binding conditions, modification of aptamers, and rational design.


The free ochratoxin A (OTA) molecule tumbles rapidly and shows low fluorescence anisotropy (FA), while the bound OTA by the aptamer has increased molecular volume and restricted freedom, showing enhanced FA. FA analysis allows screening the interaction between OTA and aptamer


Ochratoxin A Aptamer Fluorescence anisotropy Fluorescence polarization Interaction 



This work was supported by the grants from National Natural Science Foundation of China (grant no. 20905043), the Research Project Supported by Shanxi Scholarship Council of China, the State Key Laboratory of Environmental Chemistry and Ecotoxicology in the Research Center for Eco-Environmental Sciences of the Chinese Academy of Sciences (grant no. KF2010-24), and the Key Project of Chinese Ministry of Education (grant no. 212020).

Supplementary material

216_2013_6736_MOESM1_ESM.pdf (446 kb)
ESM 1 (PDF 446 KB)


  1. 1.
    Monaci L, Palmisano F (2004) Anal Bioanal Chem 378:96–103CrossRefGoogle Scholar
  2. 2.
    Hayat A, Paniel N, Rhouati A, Marty JL, Barthelmebs L (2012) Food Control 26:401–415CrossRefGoogle Scholar
  3. 3.
    McGown LB, Joseph MJ, Pitner JB, Vonk GP, Linn CP (1995) Anal Chem 67:663A–668AGoogle Scholar
  4. 4.
    Liu J, Cao Z, Lu Y (2009) Chem Rev 109:1948–1998CrossRefGoogle Scholar
  5. 5.
    Klussmann S (ed) (2006) The aptamer handbook, functional oligonucleotides and their applications. Wiley, WeinheimGoogle Scholar
  6. 6.
    Li Y, Lu Y (2009) Functional nucleic acids for analytical applications. Springer, New YorkGoogle Scholar
  7. 7.
    Cruz-Aguado JA, Penner G (2008) J Agric Food Chem 56:10456–10461CrossRefGoogle Scholar
  8. 8.
    Cruz-Aguado JA, Penner G (2008) Anal Chem 80:8853–8855CrossRefGoogle Scholar
  9. 9.
    Kuang H, Chen W, Xu D, Xu L, Zhu Y, Liu L, Chu H, Peng C, Xu C, Zhu S (2010) Biosens Bioelectron 76:710–716CrossRefGoogle Scholar
  10. 10.
    Girolamo AD, McKeague M, Miller JD, DeRosa MC, Visconti A (2011) Food Chem 127:1378–1384CrossRefGoogle Scholar
  11. 11.
    Chapuis-Hugon F, du Boisbaudry A, Madru B, Pichon V (2011) Anal Bioanal Chem 400:1199–1207CrossRefGoogle Scholar
  12. 12.
    Yang C, Lates V, Prieto-Simón B, Marty JL, Yang X (2012) Biosens Bioelectron 32:208–212CrossRefGoogle Scholar
  13. 13.
    Gradinaru CC, Marushchak DO, Samim M, Krull UJ (2010) Analyst 135:452–459CrossRefGoogle Scholar
  14. 14.
    Jameson DM, Ross JA (2010) Chem Rev 110:2685–2708CrossRefGoogle Scholar
  15. 15.
    Lea WA, Simeonov A (2011) Expert Opin Drug Discov 6:17–32CrossRefGoogle Scholar
  16. 16.
    Smith DS, Eremin SA (2008) Anal Bioanal Chem 391:1499–1507CrossRefGoogle Scholar
  17. 17.
    Wang H, Lu M, Tang MS, Van Houten B, Ross JBA, Weinfeld M, Le XC (2009) Proc Natl Acad Sci U S A 106:12849–12854CrossRefGoogle Scholar
  18. 18.
    Zhang DP, Lu ML, Wang H (2011) J Am Chem Soc 133:9188–9191CrossRefGoogle Scholar
  19. 19.
    Zhang DP, Zhao Q, Zhao BL, Wang H (2012) Anal Chem 84:3070–3074CrossRefGoogle Scholar
  20. 20.
    Ruta J, Perrier S, Ravelet C, Fize J, Peyrin E (2009) Anal Chem 81:7468–7473CrossRefGoogle Scholar
  21. 21.
    Perrier S, Ravelet C, Guieu V, Fizea J, Roy B, Perigaud C, Peyrin E (2011) Biosens Bioelectron 25:1652–1657CrossRefGoogle Scholar
  22. 22.
    Kidd A, Guieu V, Perrier S, Ravelet C, Peyrin E (2011) Anal Bioanal Chem 401:3229–3234CrossRefGoogle Scholar
  23. 23.
    Wang Y, Killian J, Hamasaki K, Rando RR (1996) Biochemistry 35:12338–12346CrossRefGoogle Scholar
  24. 24.
    Kwon M, Chun SM, Jeong S, Yu J (2011) Mol Cells 11:303–311Google Scholar
  25. 25.
    Jing M, Bowser MT (2011) Anal Chim Acta 686:9–18CrossRefGoogle Scholar
  26. 26.
    Wei AP, Herron JN (1993) Anal Chem 65:3372–3377CrossRefGoogle Scholar
  27. 27.
    Deng Q, German I, Buchanan D, Kennedy RT (2001) Anal Chem 73:5415–5421CrossRefGoogle Scholar
  28. 28.
    Sines CC, McFail-Isom L, Howerton SB, VanDerveer D, Williams LD (2000) J Am Chem Soc 122:11048–11056CrossRefGoogle Scholar
  29. 29.
    Owczarzy R, Moreira BG, You Y, Behlke MA, Walder JA (2008) Biochemistry 47:5336–5353CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xia Geng
    • 1
  • Dapeng Zhang
    • 2
  • Hailin Wang
    • 2
  • Qiang Zhao
    • 1
    Email author
  1. 1.Research Center for Environmental Science and EngineeringShanxi UniversityTaiyuanChina
  2. 2.State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations