Skip to main content

Advertisement

Log in

Nanoscale reversed-phase liquid chromatography–mass spectrometry of permethylated N-glycans

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Reversed-phase liquid chromatography on the nanoscale coupled to electrospray tandem mass spectrometry was used to analyse a mixture of four commercial glycan standards, and the method was further adapted to N-glycans enzymatically released from alpha-1-acid glycoprotein and immunoglobulin gamma. Glycans were permethylated to enable their separation by reversed-phase chromatography and to facilitate interpretation of fragmentation data. Prior to derivatization of glycans by permethylation, they were reduced to cancel anomerism because, although feasible, it was not desired to separate α- and β-anomers. The effect of supplementing chromatographic solvent with sodium hydroxide to guide adduct formation was investigated. Raising the temperature in which the separation was performed improved chromatographic resolution and affected retention times as expected. It was shown by using the tetrasaccharides sialyl Lewis X and sialyl Lewis A that reversed-phase chromatography could achieve the separation of methylated isobaric glycan analytes. Isobaric glycans were detected among the N-glycans of immunoglobulin gamma and further analysed by tandem mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AGP:

Alpha-1-acid glycoprotein

CE:

Capillary electrophoresis

ESI:

Electrospray ionization

F:

Deoxyhexose (fucose)

H:

Hexose

HILIC:

Hydrophilic interaction chromatography

HPAEC:

High performance anion exchange chromatography

IgG:

Immunoglobulin G

IVIG:

Intravenous immunoglobulin

LC:

Liquid chromatography

MALDI:

Matrix-assisted laser desorption ionization

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

N:

N-Acetylhexosamine

NR :

Reducing end reduced N-acetylhexosamine

PGC:

Porous graphitic carbon

RP:

Reversed-phase

S:

N-Acetyl neuraminic acid

TOF:

Time-of-flight

References

  1. Marth JD, Grewal PK (2008) Mammalian glycosylation in immunity. Nat Rev Immunol 8:874–887

    Article  CAS  Google Scholar 

  2. van Kooyk Y, Rabinovich GA (2008) Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol 9:593–601

    Article  Google Scholar 

  3. Kim Y, Varki A (1997) Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconjugate J 14:569–576

    Article  CAS  Google Scholar 

  4. Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5:526–542

    Article  CAS  Google Scholar 

  5. Pang PC, Chiu PC, Lee CL, Chang LY, Panico M, Morris HR, Haslam SM, Khoo KH, Clark GF, Yeung WS, Dell A (2011) Human sperm binding is mediated by the sialyl-Lewis(x) oligosaccharide on the zona pellucida. Science 333:1761–1764

    Article  CAS  Google Scholar 

  6. Dennis JW, Granovsky M, Warren CE (1999) Protein glycosylation in development and disease. Bioessays 21:412–421

    Article  CAS  Google Scholar 

  7. Haltiwanger RS, Lowe JB (2004) Role of glycosylation in development. Annu Rev Biochem 73:491–537

    Article  CAS  Google Scholar 

  8. Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Process 78:53–68

    Article  CAS  Google Scholar 

  9. Mittermayr S, Bones J, Doherty M, Guttman A, Rudd PM (2011) Multiplexed analytical glycomics: rapid and confident IgG N-glycan structural elucidation. J Proteome Res 10:3820–3829

    Article  CAS  Google Scholar 

  10. Rudd PM, Dwek RA (1997) Rapid, sensitive sequencing of oligosaccharides from glycoproteins. Curr Opin Biotechnol 8:488–497

    Article  CAS  Google Scholar 

  11. Royle L, Dwek RA, Rudd PM (2001) Current protocols in protein science. Wiley, New York

    Google Scholar 

  12. Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB (1985) Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem 57:675–679

    Article  CAS  Google Scholar 

  13. Harvey DJ (2005) Structural determination of N-linked glycans by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. Proteomics 5:1774–1786

    Article  CAS  Google Scholar 

  14. Harvey DJ (1993) Quantitative aspects of the matrix-assisted laser desorption mass spectrometry of complex oligosaccharides. Rapid Commun Mass Spectrom 7:614–619

    Article  CAS  Google Scholar 

  15. Bentley R, Sweeley CC, Makita M, Wells WW (1963) Gas chromatography of sugars and other polyhydroxy compounds. Biochem Biophys Res Commun 11:14–18

    Article  CAS  Google Scholar 

  16. Honda S, Makino A, Suzuki S, Kakehi K (1990) Analysis of the oligosaccharides in ovalbumin by high-performance capillary electrophoresis. Anal Biochem 191:228–234

    Article  CAS  Google Scholar 

  17. Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr A 499:177–196

    Article  CAS  Google Scholar 

  18. Reich WS (1939) A method for the separation of sugars by the chromatographic adsorption of their coloured esters: separation of glucose and fructose. Biochem J 33:1000–1004

    CAS  Google Scholar 

  19. Davies M, Smith KD, Harbin A, Hounsell EF (1992) High-performance liquid chromatography of oligosaccharide alditols and glycopeptides on a graphitized carbon column. J Chromatogr A 609:125–131

    Article  CAS  Google Scholar 

  20. Jolley RL, Warren KS, Scott CD, Jainchill JL, Freeman ML (1970) Carbohydrates in normal urine and blood serum as determined by high-resolution column chromatography. Am J Clin Pathol 53:793–802

    CAS  Google Scholar 

  21. Townsend RR, Hardy MR (1991) Analysis of glycoprotein oligosaccharides using high-pH anion exchange chromatography. Glycobiology 1:139–147

    Article  CAS  Google Scholar 

  22. Tolstikov VV, Fiehn O (2002) Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal Biochem 301:298–307

    Article  CAS  Google Scholar 

  23. Bruggink C, Wuhrer M, Koeleman CAM, Barreto V, Liu Y, Pohl C, Ingendoh A, Hokke CH, Deelder AM (2005) Oligosaccharide analysis by capillary-scale high-pH anion-exchange chromatography with on-line ion-trap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 829:136–143

    Article  CAS  Google Scholar 

  24. Niñonuevo M, An H, Yin H, Killeen K, Grimm R, Ward R, German B, Lebrilla C (2005) Nanoliquid chromatography-mass spectrometry of oligosaccharides employing graphitized carbon chromatography on microchip with a high-accuracy mass analyzer. Electrophoresis 26:3641–3649

    Article  Google Scholar 

  25. Ruhaak L, Deelder A, Wuhrer M (2009) Oligosaccharide analysis by graphitized carbon liquid chromatography–mass spectrometry. Anal Bioanal Chem 394:163–174

    Article  CAS  Google Scholar 

  26. Wuhrer M, Koeleman CAM, Deelder AM (2009) In: Walker JM (ed) Methods in molecular biology. Humana Press Inc, New York

    Google Scholar 

  27. Hua S, Nwosu C, Strum J, Seipert R, An H, Zivkovic A, German J, Lebrilla C (2012) Site-specific protein glycosylation analysis with glycan isomer differentiation. Anal Bioanal Chem 403:1291–1302

    Article  CAS  Google Scholar 

  28. Karlsson NG, McGuckin MA (2012) O-linked glycome and proteome of high molecular mass proteins in human ovarian cancer ascites: identification of sulfation, disialic acid and O-linked fucose. Glycobiology 22:918–929

    Article  CAS  Google Scholar 

  29. Ceroni A, Maass K, Geyer H, Geyer R, Dell A, Haslam SM (2008) GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res 7:1650–1659

    Article  CAS  Google Scholar 

  30. Peltoniemi H, Natunen S, Ritamo I, Valmu L, Räbinä J (2012) Novel data analysis tool for semiquantitative LC-MS-MS2 profiling of N-glycans. Glycoconj J. doi:10.1007/s10719-012-9412-3

  31. Hakomori S (1964) A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. J Biochem 55:205–208

    CAS  Google Scholar 

  32. Kang P, Mechref Y, Klouckova I, Novotny MV (2005) Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Commun Mass Spectrom 19:3421–3428

    Article  CAS  Google Scholar 

  33. Alvarez-Manilla G, Warren NL, Abney T, Atwood J, Azadi P, York WS, Pierce M, Orlando R (2007) Tools for glycomics: relative quantitation of glycans by isotopic permethylation using 13CH3I. Glycobiology 17:677–687

    Article  CAS  Google Scholar 

  34. Delaney J, Vouros P (2001) Liquid chromatography ion trap mass spectrometric analysis of oligosaccharides using permethylated derivatives. Rapid Commun Mass Spectrom 15:325–334

    Article  CAS  Google Scholar 

  35. Hanisch F, Müller S (2009) Analysis of methylated O-glycan alditols by reversed-phase NanoLC coupled CAD-ESI mass spectrometry. Methods Mol Biol 534:107–115

    Article  CAS  Google Scholar 

  36. Alley WR, Madera M, Mechref Y, Novotny MV (2010) Chip-based reversed-phase liquid chromatography-mass spectrometry of permethylated N-linked glycans: a potential methodology for cancer-biomarker discovery. Anal Chem 82:5095–5106

    Article  CAS  Google Scholar 

  37. Kinter M, Sherman NE (2005) Protein sequencing and identification using tandem mass spectrometry, 1st edn. Wiley, Hoboken

    Google Scholar 

  38. Nuck R, Zimmermann M, Sauvageot D, Josi D, Reutter W (1990) Optimized deglycosylation of glycoproteins by peptide-N4-(N-acetyl-beta-glucosaminyl)-asparagine amidase from Flavobacterium meningosepticum. Glycoconj J 7:279–286

    Article  CAS  Google Scholar 

  39. Jang-Lee J, North SJ, Sutton-Smith M, Goldberg D, Panico M, Morris H, Haslam S, Dell A (2006) Glycomic profiling of cells and tissues by mass spectrometry: fingerprinting and sequencing methodologies. Methods Enzymol 415:59–86

    Article  CAS  Google Scholar 

  40. Itoh S, Kawasaki N, Ohta M, Hyuga M, Hyuga S, Hayakawa T (2002) Simultaneous microanalysis of N-linked oligosaccharides in a glycoprotein using microbore graphitized carbon column liquid chromatography-mass spectrometry. J Chromatogr A 968:89–100

    Article  CAS  Google Scholar 

  41. Packer NH, Lawson MA, Jardine DR, Redmond JW (1998) A general approach to desalting oligosaccharides released from glycoproteins. Glycoconj J 15:737–747

    Article  CAS  Google Scholar 

  42. Kang P, Mechref Y, Novotny MV (2008) High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Commun Mass Spectrom 22:721–734

    Article  CAS  Google Scholar 

  43. Wuhrer M, Deelder AM, van der Burgt YEM (2011) Mass spectrometric glycan rearrangements. Mass Spectrom Rev 30:664–680

    Article  CAS  Google Scholar 

  44. Pabst M, Altmann F (2008) Influence of electrosorption, solvent, temperature, and ion polarity on the performance of LC-ESI-MS using graphitic carbon for acidic oligosaccharides. Anal Chem 80:7534–7542

    Article  CAS  Google Scholar 

  45. Kamiyama F, Yamazaki K, Kawamura K, Kohara M (1996) Temperature dependence of retention in reversed-phase liquid chromatography on a porous acrylic support. Biomed Chromatogr 10:105–110

    Article  CAS  Google Scholar 

  46. Doyle CA, Vickers TJ, Mann CK, Dorsey JG (2000) Characterization of C18-bonded liquid chromatographic stationary phases by Raman spectroscopy: the effect of temperature. J Chromatogr A 877:41–59

    Article  CAS  Google Scholar 

  47. Costello C, Contado-Miller J, Cipollo J (2007) A glycomics platform for the analysis of permethylated oligosaccharide alditols. J Am Soc Mass Spectrom 18:1799–1812

    Article  CAS  Google Scholar 

  48. Durandy A, Kaveri SV, Kuijpers TW, Basta M, Miescher S, Ravetch JV, Rieben R (2009) Intravenous immunoglobulins—understanding properties and mechanisms. Clin Exp Immunol 158(Suppl 1):2–13

    Article  CAS  Google Scholar 

  49. Rezaei N, Abolhassani H, Aghamohammadi A, Ochs HD (2011) Indications and safety of intravenous and subcutaneous immunoglobulin therapy. Expert Rev Clin Immunol 7:301–316

    Article  CAS  Google Scholar 

  50. Hodoniczky J, Zheng YZ, James DC (2005) Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol Prog 21:1644–1652

    Article  CAS  Google Scholar 

  51. Iida S, Kuni-Kamochi R, Mori K, Misaka H, Inoue M, Okazaki A, Shitara K, Satoh M (2009) Two mechanisms of the enhanced antibody-dependent cellular cytotoxicity (ADCC) efficacy of non-fucosylated therapeutic antibodies in human blood. BMC Cancer 9:58

    Article  Google Scholar 

  52. Kaneko Y, Nimmerjahn F, Ravetch JV (2006) Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313:670–673

    Article  CAS  Google Scholar 

  53. Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D, Rademacher TW, Mizuochi T, Taniguchi T, Matsuta K (1985) Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316:452–457

    Article  CAS  Google Scholar 

  54. Scherer HU, Burmester GR (2009) A clinical perspective of rheumatoid arthritis. Eur J Immunol 39:2044–2048

    Article  CAS  Google Scholar 

  55. Scherer HU, van der Woude D, Ioan-Facsinay A, el Bannoudi H, Trouw LA, Wang J, Haupl T, Burmester GR, Deelder AM, Huizinga TW, Wuhrer M, Toes RE (2010) Glycan profiling of anti-citrullinated protein antibodies isolated from human serum and synovial fluid. Arthritis Rheum 62:1620–1629

    Article  CAS  Google Scholar 

  56. Wuhrer M, Porcelijn L, Kapur R, Koeleman CA, Deelder A, de Haas M, Vidarsson G (2009) Regulated glycosylation patterns of IgG during alloimmune responses against human platelet antigens. J Proteome Res 8:450–456

    Article  CAS  Google Scholar 

  57. Selman MHJ, Derks RJE, Bondt A, Palmblad M, Schoenmaker B, Koeleman CAM, van de Geijn FE, Dolhain RJEM, Deelder AM, Wuhrer M (2012) Fc specific IgG glycosylation profiling by robust nano-reverse phase HPLC-MS using a sheath-flow ESI sprayer interface. J Proteomics 75:1318–1329

    Article  CAS  Google Scholar 

  58. Wang J, Balog CI, Stavenhagen K, Koeleman CA, Scherer HU, Selman MH, Deelder AM, Huizinga TW, Toes RE, Wuhrer M (2011) Fc-glycosylation of IgG1 is modulated by B-cell stimuli. Mol Cell Proteomics 10:M110.004655

    Article  Google Scholar 

  59. Walsh G (2010) Biopharmaceutical benchmarks 2010. Nat Biotechnol 28:917–924

    Article  CAS  Google Scholar 

  60. Stadlmann J, Weber A, Pabst M, Anderle H, Kunert R, Ehrlich HJ, Peter Schwarz H, Altmann F (2009) A close look at human IgG sialylation and subclass distribution after lectin fractionation. Proteomics 9:4143–4153

    Article  CAS  Google Scholar 

  61. Stadlmann J, Pabst M, Kolarich D, Kunert R, Altmann F (2008) Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics 8:2858–2871

    Article  CAS  Google Scholar 

  62. Huhn C, Selman MH, Ruhaak LR, Deelder AM, Wuhrer M (2009) IgG glycosylation analysis. Proteomics 9:882–913

    Article  CAS  Google Scholar 

  63. Turner GA (1992) N-glycosylation of serum proteins in disease and its investigation using lectins. Clin Chim Acta 208:149–171

    Article  CAS  Google Scholar 

  64. van Dijk W, Havenaar EC, Brinkman-van der Linden EC (1995) Alpha 1-acid glycoprotein (orosomucoid): pathophysiological changes in glycosylation in relation to its function. Glycoconj J 12:227–233

    Article  Google Scholar 

  65. Gornik O, Lauc G (2008) Glycosylation of serum proteins in inflammatory diseases. Dis Markers 25:267–278

    CAS  Google Scholar 

  66. Fournier T, Medjoubi-N N, Porquet D (2000) Alpha-1-acid glycoprotein. Biochim Biophys Acta 1482:157–171

    Article  CAS  Google Scholar 

  67. Hochepied T, Berger FG, Baumann H, Libert C (2003) Alpha(1)-acid glycoprotein: an acute phase protein with inflammatory and immunomodulating properties. Cytokine Growth Factor Rev 14:25–34

    Article  CAS  Google Scholar 

  68. de Vries B, Walter SJ, Wolfs TG, Hochepied T, Räbinä J, Heeringa P, Parkkinen J, Libert C, Buurman WA (2004) Exogenous alpha-1-acid glycoprotein protects against renal ischemia-reperfusion injury by inhibition of inflammation and apoptosis. Transplantation 78:1116–1124

    Article  Google Scholar 

  69. Israili ZH, Dayton PG (2001) Human alpha-1-glycoprotein and its interactions with drugs. Drug Metab Rev 33:161–235

    Article  CAS  Google Scholar 

  70. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50

    Article  CAS  Google Scholar 

  71. Wada Y, Azadi P, Costello CE, Dell A, Dwek RA, Geyer H, Geyer R, Kakehi K, Karlsson NG, Kato K, Kawasaki N, Khoo K, Kim S, Kondo A, Lattova E, Mechref Y, Miyoshi E, Nakamura K, Narimatsu H, Novotny MV, Packer NH, Perreault H, Peter-Katalinić J, Pohlentz G, Reinhold VN, Rudd PM, Suzuki A, Taniguchi N (2007) Comparison of the methods for profiling glycoprotein glycans—HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiology 17:411–422

    Article  CAS  Google Scholar 

  72. Wuhrer M, Stam JC, van de Geijn FE, Koeleman CAM, Verrips CT, Dolhain RJEM, Hokke CH, Deelder AM (2007) Glycosylation profiling of immunoglobulin G (IgG) subclasses from human serum. Proteomics 7:4070–4081

    Article  CAS  Google Scholar 

  73. Imre T, Schlosser G, Pocsfalvi G, Siciliano R, Molnár-Szöllosi É, Kremmer T, Malorni A, Vékey K (2005) Glycosylation site analysis of human alpha-1-acid glycoprotein (AGP) by capillary liquid chromatography-electrospray mass spectrometry. J Mass Spectrom 40:1472–1483

    Article  CAS  Google Scholar 

  74. Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 5:397–409

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Lotta Andersson and Teija Kupari for excellent technical assistance. The authors also wish to thank Dr. Manfred Wuhrer and his group at Leiden University Medical Center for sharing their expertise in glycan analytics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilja Ritamo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritamo, I., Räbinä, J., Natunen, S. et al. Nanoscale reversed-phase liquid chromatography–mass spectrometry of permethylated N-glycans. Anal Bioanal Chem 405, 2469–2480 (2013). https://doi.org/10.1007/s00216-012-6680-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6680-5

Keywords

Navigation