Analytical and Bioanalytical Chemistry

, Volume 405, Issue 8, pp 2425–2434 | Cite as

Offline and online capillary electrophoresis enzyme assays of β-N-acetylhexosaminidase

  • Tomáš KřížekEmail author
  • Veronika Doubnerová
  • Helena Ryšlavá
  • Pavel Coufal
  • Zuzana Bosáková
Original Paper
Part of the following topical collections:
  1. ABC Highlights: authored by Rising Stars and Top Experts


Enzyme assays of β-N-acetylhexosaminidase from Aspergillus oryzae using capillary electrophoresis in the offline and online setup have been developed. The pH value and concentration of the borate-based background electrolyte were optimized in order to achieve baseline separation of N,N′,N″-triacetylchitotriose, N,N′-diacetylchitobiose, and N-acetyl-d-glucosamine. The optimized method using 25 mM tetraborate buffer, pH 10.0, was evaluated in terms of repeatability, limits of detection, quantification, and linearity. The method was successfully applied to the offline enzyme assay of β-N-acetylhexosaminidase, which was demonstrated by monitoring the hydrolysis of N,N′,N″-triacetylchitotriose. The presented method was also utilized to study the pH dependence of enzyme activity. An online assay with N,N′-diacetylchitobiose as a substrate was developed using the Transverse Diffusion of Laminar Flow Profiles model to optimize the injection sequence and in-capillary mixing of substrate and enzyme plugs. The experimental results were in good agreement with predictions of the model. The online assay was successfully used to observe the inhibition effect of N,N′-dimethylformamide on the activity of β-N-acetylhexosaminidase with nanoliter volumes of reagents used per run and a high degree of automation. After adjustment of background electrolyte pH, an online assay with N,N′,N″-triacetylchitotriose as a substrate was also performed.


Electropherograms resulting from online enzyme assays of β-N-acetylhexosaminidase for chitobiose as a substrate with 10-min (red line), 5-min (blue line) and 0-min (black line) reaction time. Peak identification: 1 chitobiose, 2 N-acetylglucosamine


β-N-Acetylhexosaminidase Capillary electrophoresis Chitobiose Chitotriose Electrophoretically mediated microanalysis Enzyme activity 



7-Aminonaphthalene-1,3-disulfonic acid


Background electrolyte


Capillary electrophoresis


Cetyltrimethylammonium bromide




Electrophoretically mediated microanalysis


Electroosmotic flow




Laser-induced fluorescence


Limit of detection


Limit of quantification


Sodium dodecylsulfate


Transverse diffusion of laminar flow profiles



This work was financially supported by Charles University in Prague, projects GAUK 710, SVV and UNCE, by the Ministry of Education, Youth and Sports of the Czech Republic, project MSM0021620857, by the Czech Science Foundation, project P206/12/G151.

The authors would like to thank Dr. Václav Kašička and Dr. Dušan Koval (Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic) for graciously providing the CE–LIF instrument as well as valuable consultations and advice, and Zdeněk Kukačka for isolation of β-hexosaminidase from Aspergillus oryzae.


  1. 1.
    Rodwell VW, Kennelly PJ (2003) Harper’s illustrated biochemistry, 26th edn. McGraw-Hill, LondonGoogle Scholar
  2. 2.
    Raja MMM, Raja A, Imran MM, Santha AMI, Devasena K (2011) Biotechnology 10:51–59CrossRefGoogle Scholar
  3. 3.
    Thomason MJ, Lord J, Bain MD, Chalmers RA, Littlejohns P, Addison GM, Wilcox AH, Seymour CA (1998) J Publ Health Med 20:331–343CrossRefGoogle Scholar
  4. 4.
    Zhao Y, Liu H, Riker AI, Fodstad O, Ledoux SP, Wilson GL, Tan M (2012) Front Biosci 16:1844–1860CrossRefGoogle Scholar
  5. 5.
    Banke N, Hansen K, Diers I (1991) J Chromatogr 559:325–335CrossRefGoogle Scholar
  6. 6.
    Krueger RJ, Hobbs TR, Mihal KA, Tehrani J, Zeece MG (1991) J Chromatogr 543:451–461CrossRefGoogle Scholar
  7. 7.
    Glatz Z (2006) J Chromatogr B 841:23–37CrossRefGoogle Scholar
  8. 8.
    Bao JJ, Fujima JM, Danielson MD (1997) J Chromatogr B 699:481–497CrossRefGoogle Scholar
  9. 9.
    Bilitewski U, Genrich M, Kadow S, Mersal G (2003) Anal Bioanal Chem 377:556–569CrossRefGoogle Scholar
  10. 10.
    Vlčková M, Stettler AR, Schwarz MA (2006) J Liq Chromatogr Relat Technol 29:1047–1076CrossRefGoogle Scholar
  11. 11.
    Bao JM, Regnier FE (1992) J Chromatogr 608:217–224CrossRefGoogle Scholar
  12. 12.
    Fan Y, Scriba GKE (2010) J Pharm Biomed Anal 53:1079–1090CrossRefGoogle Scholar
  13. 13.
    Nováková S, Van Dyck S, Van Schepdael A (2004) J Chromatogr A 1032:173–184CrossRefGoogle Scholar
  14. 14.
    Van Dyck S, Kaale E, Nováková S, Glatz Z, Hoogmartens J, Van Schepdael A (2003) Electrophoresis 24:3868–3878CrossRefGoogle Scholar
  15. 15.
    Zhang J, Hoogmartens J, Van Schepdael A (2010) Electrophoresis 31:65–73CrossRefGoogle Scholar
  16. 16.
    Zhang J, Hoogmartens J, Van Schepdael A (2006) Electrophoresis 27:35–43CrossRefGoogle Scholar
  17. 17.
    Křížek T, Kubíčková A (2012) Anal Bioanal Chem 403:2185–2195CrossRefGoogle Scholar
  18. 18.
    Harmon BJ, Patterson DH, Regnier FE (1993) Anal Chem 65:2655–2662CrossRefGoogle Scholar
  19. 19.
    Taga A, Honda S (1996) J Chromatogr A 742:243–250CrossRefGoogle Scholar
  20. 20.
    Van Dyck S, Vissers S, Van Shepdael A, Hoogmartens J (2003) J Chromatogr A 986:303–311CrossRefGoogle Scholar
  21. 21.
    Van Dyck S, Van Schepdael A, Hoogmartens J (2001) Electrophoresis 22:1436–1442CrossRefGoogle Scholar
  22. 22.
    Okhonin V, Liu X, Krylov SN (2005) Anal Chem 77:5925–5929CrossRefGoogle Scholar
  23. 23.
    Okhonin V, Wong E, Krylov SN (2008) Anal Chem 80:7482–7486CrossRefGoogle Scholar
  24. 24.
    Wong E, Okhonin V, Berezovski MV, Nozaki T, Waldmann H, Alexandrov K, Krylov SN (2008) J Am Chem Soc 130:11862–11863CrossRefGoogle Scholar
  25. 25.
    Krylov SN TDLFP program. York University, Toronto, Canada. Accessed 2 July 2012
  26. 26.
    Plíhal O, Sklenář J, Kmoníčková J, Man P, Pompach P, Havlíček V, Křen V, Bezouška K (2004) Biochem Soc Trans 32:764–765CrossRefGoogle Scholar
  27. 27.
    Slámová K, Bojarová P, Petrásková L, Křen V (2010) Biotechnol Adv 28:682–693CrossRefGoogle Scholar
  28. 28.
    Plíhal O, Sklenář J, Hofbauerová K, Novák P, Man P, Pompach P, Kavan D, Ryšlavá H, Weignerová L, Charvátová-Pišvejcová A, Křen V, Bezouška K (2007) Biochemistry 46:2719–2734CrossRefGoogle Scholar
  29. 29.
    Ettrich R, Kopecký V, Hofbauerová K, Baumruk V, Novák P, Pompach P, Man P, Plíhal O, Kutý M, Kulik N, Sklenář K, Ryšlavá H, Křen V, Bezouška K (2007) BMC Struct Biol 7:32CrossRefGoogle Scholar
  30. 30.
    Ryšlavá H, Kalendová A, Doubnerová V, Skočdopol P, Kumar V, Kukačka Z, Pompach P, Vaněk O, Slámová K, Bojarová P, Kulik N, Ettrich R, Křen V, Bezouška K (2011) FEBS J 278:2469–2484CrossRefGoogle Scholar
  31. 31.
    El Rassi Z (1999) Electrophoresis 20:3134–3144CrossRefGoogle Scholar
  32. 32.
    Suzuki S, Honda S (1998) Electrophoresis 19:2539–2560CrossRefGoogle Scholar
  33. 33.
    Rovio S, Yli-Kauhaluoma J, Sirén H (2007) Electrophoresis 28:3129–3135CrossRefGoogle Scholar
  34. 34.
    Rovio S, Simolin H, Koljonen K, Sirén H (2008) J Chromatogr A 1185:139–144CrossRefGoogle Scholar
  35. 35.
    Rainelli A, Hauser PC (2005) Anal Bioanal Chem 382:789–794CrossRefGoogle Scholar
  36. 36.
    Tůma P, Málková K, Samcová E, Štulík K (2011) Anal Chim Acta 698:1–5CrossRefGoogle Scholar
  37. 37.
    You JM, Sheng X, Ding CX, Sun ZW, Suo YR, Wang HL, Li W (2008) Anal Chim Acta 609:66–75CrossRefGoogle Scholar
  38. 38.
    Momenbeik F, Johns C, Breadmore MC, Hilder EF, Macka M, Haddad PR (2006) Electrophoresis 27:4039–4046CrossRefGoogle Scholar
  39. 39.
    Andersen KE, Bjergegaard C, Sorensen H (2003) J Agric Food Chem 51:7234–7239CrossRefGoogle Scholar
  40. 40.
    Tseng HM, Gattolin S, Pritchard J, Newbury HJ, Barrett DA (2009) Electrophoresis 30:1399–1405CrossRefGoogle Scholar
  41. 41.
    Kazarian AA, Hilder EF, Breadmore MC (2008) J Chromatogr A 1200:84–91CrossRefGoogle Scholar
  42. 42.
    Wang XY, Wang Q, Chen Y, Han HW (2003) J Chromatogr A 992:181–191CrossRefGoogle Scholar
  43. 43.
    Foster AB (1957) Adv Carbohydr Chem 12:81–116CrossRefGoogle Scholar
  44. 44.
    Mechref Y, Ostrander GK (1995) El Rassi Z. Electrophoresis 16:1499–1504CrossRefGoogle Scholar
  45. 45.
    Wolff MW, Bazin HG, Lindhardt RJ (1999) Biotechnol Tech 13:797–801CrossRefGoogle Scholar
  46. 46.
    Rustighi I, Campa C, Rossi M, Semeraro S, Vetere A, Gamini A (2009) Electrophoresis 30:2632–2639CrossRefGoogle Scholar
  47. 47.
    Blanes L, Saito RM, Genta FA, Donegá J, Terra WR, Ferreira C, Do Lago CL (2008) Anal Biochem 373:99–103CrossRefGoogle Scholar
  48. 48.
    Atkins P, De Paula J (2002) Atkins physical chemistry, 7th edn. Oxford University Press, OxfordGoogle Scholar
  49. 49.
    Edward JT (1957) J Polymer Sci 25:483–485CrossRefGoogle Scholar
  50. 50.
    Sober HA (1970) CRC handbook of biochemistry, 2nd edn. CRC, ClevelandGoogle Scholar
  51. 51.
    Kawahara K (1969) Biochemistry 8:2551–2557CrossRefGoogle Scholar
  52. 52.
    Den Tandt WR, Sharpe S (1991) Clin Chim Acta 199:231–236CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tomáš Křížek
    • 1
    Email author
  • Veronika Doubnerová
    • 2
  • Helena Ryšlavá
    • 2
  • Pavel Coufal
    • 1
  • Zuzana Bosáková
    • 1
  1. 1.Department of Analytical Chemistry, Faculty of ScienceCharles University in PraguePragueCzech Republic
  2. 2.Department of Biochemistry, Faculty of ScienceCharles University in PraguePragueCzech Republic

Personalised recommendations