Analytical and Bioanalytical Chemistry

, Volume 402, Issue 9, pp 2765–2776 | Cite as

Rapid glycopeptide enrichment and N-glycosylation site mapping strategies based on amine-functionalized magnetic nanoparticles

  • Chu-Wei Kuo
  • I-Lin Wu
  • He-Hsuan Hsiao
  • Kay-Hooi Khoo
Original Paper

Abstract

Glycoproteins secreted or expressed on the cell surface at specific pathophysiological stages are well-recognized disease biomarkers and therapeutic targets. While mapping of specific glycan structures can be performed at the level of released glycans, site-specific glycosylation and identification of specific protein carriers can only be determined by analysis of glycopeptides. A key enabling step in mass spectrometry (MS)-based glycoproteomics is the ability to selectively or non-selectively enrich for the glycopeptides from a total pool of a digested proteome for MS analysis since the highly heterogeneous glycopeptides are usually present at low abundance and ionize poorly compared with non-glycosylated peptides. Among the most common approaches for non-destructive and non-glycan-selective glycopeptide enrichment are strategies based on various forms of hydrophilic interaction liquid chromatography (HILIC). We present here a variation of this method using amine-derivatized Fe3O4 nanoparticles, in concert with in situ peptide N-glycosidase F digestion for direct matrix-assisted laser desorption/ionization–mass spectrometry analysis of N-glycosylation sites and the released glycans. Conditions were also optimized for efficient elution of the enriched glycopeptides from the nanoparticles for on-line nanoflow liquid chromatography–MS/MS analysis. Successful applications to single glycoproteins as well as total proteomic mixtures derived from biological fluids established the unrivaled practical versatility of this method, with enrichment efficiency comparable to other HILIC-based methods.

Keywords

Glycoproteomics N-glycosylation sites Glycopeptide capture Nanoparticles Mass spectrometry 

Abbreviations

Fuc

Fucose

Gal

Galactose

GlcNAc

N-Acetylglucosamine

Hex

Hexose

HexNAc

N-Acetylhexosamine

HILIC

Hydrophilic interaction liquid chromatography

MS

Mass spectrometry

Neu5Ac

N-Acetylneuraminic acid

ULF

Uterine luminal fluid

Supplementary material

216_2012_5724_MOESM1_ESM.pdf (1.7 mb)
ESM 1(PDF 1.65 mb)

References

  1. 1.
    Paulson JC, Blixt O, Collins BE (2006) Sweet spots in functional glycomics. Nat Chem Biol 2(5):238–248CrossRefGoogle Scholar
  2. 2.
    Varki A (2008) Sialic acids in human health and disease. Trends Mol Med 14(8):351–360CrossRefGoogle Scholar
  3. 3.
    Hakomori S (1996) Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res 56(23):5309–5318Google Scholar
  4. 4.
    Zaia J (2010) Mass spectrometry and glycomics. OMICS 14(4):401–418CrossRefGoogle Scholar
  5. 5.
    Hart GW, Copeland RJ (2010) Glycomics hits the big time. Cell 143(5):672–676CrossRefGoogle Scholar
  6. 6.
    Pan S, Chen R, Aebersold R, Brentnall TA (2011) Mass spectrometry based glycoproteomics—from a proteomics perspective. Mol Cell Proteomics 10 (1):R110 003251Google Scholar
  7. 7.
    Wuhrer M, Catalina MI, Deelder AM, Hokke CH (2007) Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr 849(1–2):115–128Google Scholar
  8. 8.
    Madera M, Mechref Y, Klouckova I, Novotny MV (2007) High-sensitivity profiling of glycoproteins from human blood serum through multiple-lectin affinity chromatography and liquid chromatography/tandem mass spectrometry. J Chromatogr 845(1):121–137CrossRefGoogle Scholar
  9. 9.
    Johansen E, Schilling B, Lerch M, Niles RK, Liu H, Li B, Allen S, Hall SC, Witkowska HE, Regnier FE, Gibson BW, Fisher SJ, Drake PM (2009) A lectin HPLC method to enrich selectively-glycosylated peptides from complex biological samples. J Vis Exp (32):1398Google Scholar
  10. 10.
    Zielinska DF, Gnad F, Wisniewski JR, Mann M (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141(5):897–907CrossRefGoogle Scholar
  11. 11.
    Larsen MR, Jensen SS, Jakobsen LA, Heegaard NH (2007) Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Mol Cell Proteomics 6(10):1778–1787CrossRefGoogle Scholar
  12. 12.
    Alvarez-Manilla G, Atwood J 3rd, Guo Y, Warren NL, Orlando R, Pierce M (2006) Tools for glycoproteomic analysis: size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. J Proteome Res 5(3):701–708CrossRefGoogle Scholar
  13. 13.
    Snovida SI, Bodnar ED, Viner R, Saba J, Perreault H (2010) A simple cellulose column procedure for selective enrichment of glycopeptides and characterization by nano LC coupled with electron-transfer and high-energy collisional-dissociation tandem mass spectrometry. Carbohydr Res 345(6):792–801CrossRefGoogle Scholar
  14. 14.
    Li J, Li X, Guo Z, Yu L, Zou L, Liang X (2011) Click maltose as an alternative to reverse phase material for desalting glycopeptides. Analyst 136(19):4075–4082CrossRefGoogle Scholar
  15. 15.
    Wada Y, Tajiri M, Yoshida S (2004) Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal Chem 76(22):6560–6565CrossRefGoogle Scholar
  16. 16.
    Wuhrer M, Koeleman CA, Hokke CH, Deelder AM (2005) Protein glycosylation analyzed by normal-phase nano-liquid chromatography–mass spectrometry of glycopeptides. Anal Chem 77(3):886–894CrossRefGoogle Scholar
  17. 17.
    Takegawa Y, Deguchi K, Keira T, Ito H, Nakagawa H, Nishimura S (2006) Separation of isomeric 2-aminopyridine derivatized N-glycans and N-glycopeptides of human serum immunoglobulin G by using a zwitterionic type of hydrophilic-interaction chromatography. J Chromatogr A 1113(1–2):177–181CrossRefGoogle Scholar
  18. 18.
    Mysling S, Palmisano G, Hojrup P, Thaysen-Andersen M (2010) Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics. Anal Chem 82(13):5598–5609CrossRefGoogle Scholar
  19. 19.
    Parker BL, Palmisano G, Edwards AV, White MY, Engholm-Keller K, Lee A, Scott NE, Kolarich D, Hambly BD, Packer NH, Larsen MR, Cordwell SJ (2011) Quantitative N-linked glycoproteomics of myocardial ischemia and reperfusion injury reveals early remodeling in the extracellular environment. Mol Cell Proteomics 10 (8):M110 006833Google Scholar
  20. 20.
    Larsen MR, Hojrup P, Roepstorff P (2005) Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol Cell Proteomics 4(2):107–119Google Scholar
  21. 21.
    Alley WR Jr, Mechref Y, Novotny MV (2009) Use of activated graphitized carbon chips for liquid chromatography/mass spectrometric and tandem mass spectrometric analysis of tryptic glycopeptides. Rapid Commun Mass Spectrom 23(4):495–505CrossRefGoogle Scholar
  22. 22.
    Hua S, Nwosu CC, Strum JS, Seipert RR, An HJ, Zivkovic AM, German JB, Lebrilla CB (2012) Site-specific protein glycosylation analysis with glycan isomer differentiation. Anal Bioanal Chem (in press)Google Scholar
  23. 23.
    Zhang H, Li XJ, Martin DB, Aebersold R (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21(6):660–666CrossRefGoogle Scholar
  24. 24.
    Gao M, Deng C, Zhang X (2011) Magnetic nanoparticles-based digestion and enrichment methods in proteomics analysis. Expert Rev Proteomics 8(3):379–390CrossRefGoogle Scholar
  25. 25.
    Sparbier K, Koch S, Kessler I, Wenzel T, Kostrzewa M (2005) Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J Biomol Tech 16(4):407–413Google Scholar
  26. 26.
    Sparbier K, Asperger A, Resemann A, Kessler I, Koch S, Wenzel T, Stein G, Vorwerg L, Suckau D, Kostrzewa M (2007) Analysis of glycoproteins in human serum by means of glycospecific magnetic bead separation and LC-MALDI-TOF/TOF analysis with automated glycopeptide detection. J Biomol Tech 18(4):252–258Google Scholar
  27. 27.
    Lee YC, Block G, Chen H, Folch-Puy E, Foronjy R, Jalili R, Jendresen CB, Kimura M, Kraft E, Lindemose S, Lu J, McLain T, Nutt L, Ramon-Garcia S, Smith J, Spivak A, Wang ML, Zanic M, Lin SH (2008) One-step isolation of plasma membrane proteins using magnetic beads with immobilized concanavalin A. Protein Expr Purif 62(2):223–229CrossRefGoogle Scholar
  28. 28.
    Chu ST, Huang HL, Chen JM, Chen YH (1996) Demonstration of a glycoprotein derived from the 24p3 gene in mouse uterine luminal fluid. Biochem J 316(Pt 2):545–550Google Scholar
  29. 29.
    Lin SY, Chen YY, Fan YY, Lin CW, Chen ST, Wang AH, Khoo KH (2008) Precise mapping of increased sialylation pattern and the expression of acute phase proteins accompanying murine tumor progression in BALB/c mouse by integrated sera proteomics and glycomics. J Proteome Res 7(8):3293–3303CrossRefGoogle Scholar
  30. 30.
    Qhobosheane M, Santra S, Zhang P, Tan W (2001) Biochemically functionalized silica nanoparticles. Analyst 126(8):1274–1278CrossRefGoogle Scholar
  31. 31.
    Bruce IJ, Sen T (2005) Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations. Langmuir 21(15):7029–7035CrossRefGoogle Scholar
  32. 32.
    Lee CL, Hsiao HH, Lin CW, Wu SP, Huang SY, Wu CY, Wang AH, Khoo KH (2003) Strategic shotgun proteomics approach for efficient construction of an expression map of targeted protein families in hepatoma cell lines. Proteomics 3(12):2472–2486CrossRefGoogle Scholar
  33. 33.
    Dell A, Reason AJ, Khoo KH, Panico M, McDowell RA, Morris HR (1994) Mass spectrometry of carbohydrate-containing biopolymers. Methods Enzymol 230:108–132CrossRefGoogle Scholar
  34. 34.
    Olsen JV, de Godoy LM, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M (2005) Parts per million mass accuracy on an orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4(12):2010–2021CrossRefGoogle Scholar
  35. 35.
    Lee BS, Krishnanchettiar S, Lateef SS, Lateef NS, Gupta S (2005) Characterization of oligosaccharide moieties of intact glycoproteins by microwave-assisted partial acid hydrolysis and mass spectrometry. Rapid Commun Mass Spectrom 19(18):2629–2635Google Scholar
  36. 36.
    Yu SY, Wu SW, Hsiao HH, Khoo KH (2009) Enabling techniques and strategic workflow for sulfoglycomics based on mass spectrometry mapping and sequencing of permethylated sulfated glycans. Glycobiology 19(10):1136–1149CrossRefGoogle Scholar
  37. 37.
    Kuo CW, Chen CM, Lee YC, Chu ST, Khoo KH (2009) Glycomics and proteomics analyses of mouse uterine luminal fluid revealed a predominance of Lewis Y and X epitopes on specific protein carriers. Mol Cell Proteomics 8(2):325–342Google Scholar
  38. 38.
    Calvano CD, Zambonin CG, Jensen ON (2008) Assessment of lectin and HILIC based enrichment protocols for characterization of serum glycoproteins by mass spectrometry. J Proteomics 71(3):304–317CrossRefGoogle Scholar
  39. 39.
    McDonald CA, Yang JY, Marathe V, Yen TY, Macher BA (2009) Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome. Mol Cell Proteomics 8(2):287–301Google Scholar
  40. 40.
    Bodenmiller B, Mueller LN, Pedrioli PG, Pflieger D, Junger MA, Eng JK, Aebersold R, Tao WA (2007) An integrated chemical, mass spectrometric and computational strategy for (quantitative) phosphoproteomics: application to Drosophila melanogaster Kc167 cells. Mol Biosyst 3(4):275–286CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Chu-Wei Kuo
    • 1
  • I-Lin Wu
    • 1
  • He-Hsuan Hsiao
    • 1
  • Kay-Hooi Khoo
    • 1
  1. 1.NRPGM Core Facilities for Proteomics and Institute of Biological ChemistryAcademia SinicaNankangTaiwan

Personalised recommendations