Approach combining on-line metal exchange and tangential-flow ultrafiltration for in-situ characterization of metal species in humic hydrocolloids

Abstract

This paper deals with the development and optimization of an analytical procedure using ultrafiltration and a flow-injection system, and its application in in-situ experiments to characterize the lability and availability of metal species in humic-rich hydrocolloids. The on-line system consists of a tangential flow ultrafiltration device equipped with a 3-kDa filtration membrane. The concentration of free ions in the filtrate was determined by atomic-absorption spectrometry, assuming that metals not complexed by aquatic humic substances (AHS) were separated from the complexed species (M–AHS) retained by the membrane. For optimization, exchange experiments using Cu(II) solutions and AHS solutions doped with the metal ions Ni(II), Mn(II), Fe(III), Cd(II), and Zn(II) were carried out to characterize the stability of the metal–AHS complexes. The new procedure was then applied in-situ at a tributary of the Ribeira do Iguape river (Iguape, São Paulo State, Brazil) and evaluated using the ions Fe(III) and Mn(II), which are considered to be essential constituents of aquatic systems. From the exchange between metal–natural organic matter (M–NOM) and the Cu(II) ions it was concluded that Cu(II) concentrations >485 μg L−1 were necessary to obtain maximum exchange of the complexes Mn–NOM and Fe–NOM, corresponding to 100% Mn and 8% Fe. Moreover, the new analytical procedure is simple and opens up new perspectives for understanding the complexation, transport, stability, and lability of metal species in humic-rich aquatic environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Rocha JC, Sargentini E Jr, Zara LF, Rosa AH, Santos A, Burba P (2003) Talanta 61:699–707

    Article  CAS  Google Scholar 

  2. 2.

    Tonello PS, Rosa AH, Abreu CH Jr, Menegário AA (2007) Anal Chim Acta 598:162–168

    Article  CAS  Google Scholar 

  3. 3.

    Aldrich AP, Kistler D, Sigg L (2002) Environ Sci Technol 36:4824–4830

    Article  CAS  Google Scholar 

  4. 4.

    Nifant’eva TI, Shiknev VM, Spivakov BY, Burba P (1999) Talanta 48:257–267

    Article  Google Scholar 

  5. 5.

    Rosa AH, Goveia D, Bellin IC, Lessa SS, Dias Filho NL, Padilha PM (2006) Anal Bioanal Chem 386:2153–2160

    Article  CAS  Google Scholar 

  6. 6.

    Rosa AH, Goveia D, Bellin IC, Tonello PS, Antunes MLP, Dias Filho NL, Rodrigues Filho UP (2007) Quim Nova 30:59–65

    CAS  Google Scholar 

  7. 7.

    Goveia D, Rosa AH, Bellin IC, Lobo FA, Fraceto LF, Romão LPC (2008) Anal Bioanal Chem 390:1173–1180

    Article  CAS  Google Scholar 

  8. 8.

    Templeton DM, Freek A, Cornelis R, Danielssom L-C, Muntau H, van Leeuwen HP, Lobniski R (2000) Pure Appl Chem 72:1453–1470

    Article  CAS  Google Scholar 

  9. 9.

    Tipping E (2002) Cation Binding by Humic Substances. Cambridge University Press, New York

    Google Scholar 

  10. 10.

    Weber T, Allard T, Benedetti MF (2006) J Geochem Explor 88:166–171

    Article  CAS  Google Scholar 

  11. 11.

    Tipping E, Rey-Castro C, Bryan SE, Hamilton-Taylor J (2002) Geochim Cosmochim Acta 66:3211–3224

    Article  CAS  Google Scholar 

  12. 12.

    Tipping E (2007) Applied Geochemistry 22:1624–1635

    Article  CAS  Google Scholar 

  13. 13.

    Benedetti MF, Ranville JF, Ponthieu M, Pinheiro JP (2002) Org Geochem 33:269–279

    Article  CAS  Google Scholar 

  14. 14.

    Temminghoff EJM, Plette ACC, van Eck R, van Riemsdijk WH (2000) Anal Chim Acta 417:149–157

    Article  CAS  Google Scholar 

  15. 15.

    Domingos RF, Benedetti MF, Pinheiro JP (2007) Anal Chim Acta 589:261–268

    Article  CAS  Google Scholar 

  16. 16.

    Pinheiro JP, van Leeuwen HP (2004) J Electroanal Chem 570:69–75

    Article  CAS  Google Scholar 

  17. 17.

    Filho NL, do Carmo DR, Rosa AH (2006) Electrochim Acta 52:965–972

    Article  Google Scholar 

  18. 18.

    Dias NL, do Carmo DR, Rosa AH (2006) Sep Sci Technol 41:733–746

    Article  Google Scholar 

  19. 19.

    Burba P, Van den Bergh J, Klockow D (2001) Fresenius J Anal Chem 371:660–669

    Article  CAS  Google Scholar 

  20. 20.

    Staden JF, Stefan RI (2004) Talanta 64:1109–1113

    Article  Google Scholar 

  21. 21.

    Zhang H, Davison W (2000) Anal Chem 72:4447–4452

    Article  CAS  Google Scholar 

  22. 22.

    Buffle J, Horvai G (2000) In situ monitoring of aquatic systems: Chemical analysis and speciation, New York

  23. 23.

    Anastas PT, Warner JC (1998) Green Chemistry: Theory and Practice, New York

  24. 24.

    Keith LH, Gron LU, Young JL (2007) Chem Rev 107:2695–2708

    Article  CAS  Google Scholar 

  25. 25.

    Aiken GR, McKnight DM, Wershaw R, Maccarthy P (1985) Humic substances in soil, sediment and water, New York

  26. 26.

    Rosa AH, Oliveira LC, Bellin IC, Rocha JC, DiasFilho NL (2005) Thermochim Acta 433:77–82

    Article  CAS  Google Scholar 

  27. 27.

    Won-Young A, Kalinichev AG, Clark MM (2008) J Membr Sci 309:128–140

    Article  Google Scholar 

  28. 28.

    Chien-Hwa Y, Chung-Hsin W, Chia-Hung L, Chi-Hung H, Cheng-Fang L (2008) Sep Purif Technol 64:206–212

    Article  Google Scholar 

  29. 29.

    Burba P, Aster B, Ninfan’eva T, Shkinev V, Spivakov BY (1998) Talanta 5:997–988

    Google Scholar 

  30. 30.

    Staub C, Buffle J, Haerdi W (1984) Anal Chem 56:2843–2849

    Article  CAS  Google Scholar 

  31. 31.

    Rosa AH, Rocha JC, Burba P (2002) Talanta 58:969–978

    Google Scholar 

  32. 32.

    Rocha JC, Sargentini E, Zara LF, Rosa AH, dos Santos A, Burba P (2003) Talanta 61:699–707

    Article  CAS  Google Scholar 

  33. 33.

    Tuschall JR, Brezonik PL (1983) Anal Chim Acta 149:47–58

    Article  CAS  Google Scholar 

  34. 34.

    Morrison GMP, Batley GE, Florence TM (1989) Chem Brit 25:791–797

    CAS  Google Scholar 

  35. 35.

    Abate G, Masini JC (1999) Quim Nova 22:661–665

    CAS  Google Scholar 

  36. 36.

    Soares HMVM, Vasconcelos MTSD (1994) Anal Chim Acta 293:261–270

    Article  CAS  Google Scholar 

  37. 37.

    Romão LPC, Castro GR, Rosa AH, Rocha JC, Padilha PM (2003) Anal Bioanal Chem 375:1097–1100

    Google Scholar 

  38. 38.

    Stevenson FJ (1994) Humus chemistry, ■, New York

  39. 39.

    Perdue EM (1998) Chemical composition, structure, and metal binding properties. In: Hessen DO, Tranvik LJ (eds) Aquatic humic substances/Ecology and biogeochemistry. Springer, Berlin

    Google Scholar 

  40. 40.

    Lund W (1990) Fresenius J Anal Chem 337:557–564

    Article  CAS  Google Scholar 

  41. 41.

    Klute A (1986) (ed.) Methods of soil analysis, Part 1 2nd edition Agron Monogr 9 Am Soc Agron, WI, Madison

Download references

Acknowledgements

Financial support of this work by FAPESP (Fundação de Amparo a Pesquisa do Estado de São Paulo), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), and FUNDUNESP (Fundação para o Desenvolvimento da UNESP) is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to André Henrique Rosa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MPG 1567 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goveia, D., Lobo, F.A., Burba, P. et al. Approach combining on-line metal exchange and tangential-flow ultrafiltration for in-situ characterization of metal species in humic hydrocolloids. Anal Bioanal Chem 397, 851–860 (2010). https://doi.org/10.1007/s00216-010-3547-5

Download citation

Keywords

  • Lability/availability
  • Metal
  • Aquatic humic substances
  • Ultrafiltration