Skip to main content
Log in

Validated HPAEC-PAD method for prebiotics determination in synbiotic fermented milks during shelf life

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Interest concerning functional food has been growing in recent years, and much attention has been focused on the choice of prebiotic fibers and probiotic microorganisms added to food products with the aim of improving health, producing synbiotic products. In the work reported here, an innovative analytical method performed by high-performance anion-exchange chromatography (HPAEC) with pulsed electrochemical detection has been optimized and validated for application to the study of prebiotic effects in synbiotic fermented milk prepared by addition of probiotics. The proposed method permits the evaluation of fructooligosaccharides and inulooligosaccharides with degrees of polymerization of 6–7 and 4–7, respectively. Quantitative determination was performed on oligosaccharides, whose standards are not commercially available, by employing calibration curves built by adding a known amount of the fiber used as an ingredient to the matrix. The work provides results from a parallel study on simultaneous variations of prebiotics and probiotics during the shelf life of fermented milk samples. The main advantage over time-consuming, classic enzymatic methods, whose results are limited only to average fiber content, is the possibility of dosing each carbohydrate by performing a single HPAEC run. Validation in terms of detection and quantitation limits, linearity, precision, and recovery was carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gibson GR, Roberfroid MB (1995) J Nutr 25:1401–1412

    Google Scholar 

  2. Casale L, Alegro A, Alegro JHA, Cardarelli HR, Chiu MC, Saad S (2007) Potentially probiotic and synbiotic chocolate mousse. Lebensm Wiss Technol 40:669–675

    Article  Google Scholar 

  3. Buriti FCA, Cardarelli HR, Filisetti TMCC, Saad SMI (2007) Food Chem 104:1605–1610

    Article  CAS  Google Scholar 

  4. Gomes A, Rodrigues D, Freitas AC, Santos TR, Goodfellow B (2009) New Biotechnol 25(1):S94

    Article  Google Scholar 

  5. Gibson GR, Probert HM, Van Loo J, Rastall RA, Roberfroid MB (2004) Nutr Res Rev 17:259–275

    Article  CAS  Google Scholar 

  6. Roberfroid MB, Delzenne NM (1998) Annu Rev Nut 18:117–143

    Article  CAS  Google Scholar 

  7. Manzi P, Marconi S, Pizzoferrato L (2007) Food Chem 104:808–813

    Article  CAS  Google Scholar 

  8. Teitelbaum JE, Walker WA (2002) Annu Rev Nutr 22:107–138

    Article  CAS  Google Scholar 

  9. Fooks LJ, Fuller R, Gibson GR (1999) Int Dairy J 9:53–61

    Article  Google Scholar 

  10. Farnworth ER (2001) In: Wildman REC (ed) Handbook of nutraceuticals and functional food. Boca Raton, CRC

    Google Scholar 

  11. Shin HS, Lee JH, Pestka JJ, Ustunol Z (2000) J Food Sci 65(5):884–887

    Article  CAS  Google Scholar 

  12. Alkalin AS, Fenderya S, Akbulut N (2004) Int J Food Sci Technol 39:613–621

    Article  Google Scholar 

  13. Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A, Zanoni S, Matteuzzi D (2005) Appl Environ Microb 71:6150–6158

    Article  CAS  Google Scholar 

  14. Makras L, Acker GV, Vuyst LD (2005) Appl Environ Microb 71:6531–6537

    Article  CAS  Google Scholar 

  15. Lopez-Molina D, Navarro-Martinez MD, Rojas-Melgarejo F, Hiner AN, Chazarra S, Rodriguez-Lopez JN (2005) Phytochemistry 66(12):1476–1484

    Article  CAS  Google Scholar 

  16. McCleary BV, Murphy A, Mugford DC (1997) J AOAC Int 83:356–364

    Google Scholar 

  17. Andersen R, Sorensen A (2000) Eur Food Res Technol 210:148–152

    Article  Google Scholar 

  18. Steegmans M, Iliaens S, Hoebregs H (2004) J AOAC Int 87:1200–1207

    CAS  Google Scholar 

  19. Quemener B, Thibault JF, Coussment P (1994) Lebansm Wiss Technol 27:125–132

    Article  CAS  Google Scholar 

  20. Corradini C, Bianchi F, Matteuzzi D, Amoretti A, Rossi M, Zanoni S (2004) J Chromatogr A 1054:165–173

    Article  CAS  Google Scholar 

  21. Chiavaro E, Vittadini E, Corradini C (2007) Eur Food Res Technol 225:85–94

    Article  CAS  Google Scholar 

  22. Borromei C, Careri M, Cavazza A, Corradini C, Elviri L, Mangia A, Merusi C (2009) Int J Anal Chem. doi:10.1155/2009/530639

  23. Feinberg M, San-Redon J, Assié A (2009) J Chromatogr B 877(23):2388–2395

    Article  CAS  Google Scholar 

  24. Heinze B, Praznik W (1991) J Polym Sci 48:207–225

    CAS  Google Scholar 

  25. Borromei C, Cavazza A, Merusi C, Corradini C (2009) J Sep Sci 32:1–8

    Article  Google Scholar 

  26. LGC (1998) The fitness for purpose of analytical methods: a laboratory guide to method validation and related topics. EURACHEM guide. LGC, Teddington. Available via http://www.eurachem.org

  27. Vinderola CG, Reinhemer JA (2000) Int Dairy J 10:271–275

    Article  Google Scholar 

  28. Shah NP (1997) Milchwissenschaft 52(2):72–76

    CAS  Google Scholar 

  29. Corradini C, Galanti R, Nicoletti I, Restani P, Beretta B, Gaiaschi A (2000) In: Proceedings of IV Italian national congress of food chemistry

  30. Kaplan H, Hutkins RW (2000) Appl Environ Microb 66(6):2682–2684

    Article  CAS  Google Scholar 

  31. Zhu J (2004) Shipin Gongye Keji 25(2):70–71

    Google Scholar 

  32. Dello Staffolo M, Bertola N, Martino M, Bevilacqua A (2004) Int Dairy J 14(3):263–268

    Article  Google Scholar 

  33. Akalin AS, Gönç S, Ünal G, Fenderya S (2007) J Food Sci 72(7):M222–M227

    Article  CAS  Google Scholar 

  34. Kurmann JA, Rasic JL (1991) In: Robinson RK (ed) Therapeutic properties of fermented milks. Applied Science, London

    Google Scholar 

  35. Dave RI, Shah NP (1997) Int Dairy J 7:31–41

    Article  Google Scholar 

  36. De Souza Oliveira RP, Florence ACR, Silva RC, Perego P, Converti A, Gioielli LA, De Oliveira MN (2008) Int J Food Microbiol 128(3):467–472

    Article  Google Scholar 

  37. Vinderola G, Mocchiutti P, Reinheimer JA (2002) J Dairy Sci 85:721–729

    Article  CAS  Google Scholar 

  38. Rybka S (1994) The enumeration of Lactobacillus, Streptoccocus and Bifidobacterium spp. in yogurt starters. BSc dissertation, University of New South Wales

  39. Kailasapathy K, Chin J (2000) Immunol Cell Biol 78:80–88

    Article  CAS  Google Scholar 

  40. Donkor ON, Nilmini SLI, Stolic P, Vasiljevic T, Shah NP (2007) Int Dairy J 17:657–665

    Article  CAS  Google Scholar 

  41. De Souza Oliveira RP, Perego P, Converti A, De Oliveira MN (2009) Lebensm Wiss Technol 42(5):1015–1021

    Article  Google Scholar 

  42. Sangeetha P, Ramesh MN, Prapulla SG (2005) Process Biochem 40:1085–1088

    Article  CAS  Google Scholar 

  43. Muramatsu K, Onodera S, Kikuchi M, Shiomi N (1992) Biosci Biotechnol Biochem 56:1451–1454

    Article  CAS  Google Scholar 

  44. Sodini L, Lucas A, Oliveira MN, Remeuf F, Corrieu G (2002) J Dairy Sci 85(10):2479–2488

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The project was funded by the Italian Ministry for the University and Research (MIUR) with PNR project no. RBIP06SXMR “Sviluppo di metodologie innovative per l”analisi di prodotti agroalimentari”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Corradini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borromei, C., Cavazza, A., Corradini, C. et al. Validated HPAEC-PAD method for prebiotics determination in synbiotic fermented milks during shelf life. Anal Bioanal Chem 397, 127–135 (2010). https://doi.org/10.1007/s00216-010-3510-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3510-5

Keywords

Navigation