Skip to main content

Comparison of two derivatization-based methods for solid-phase microextraction–gas chromatography–mass spectrometric determination of bisphenol A, bisphenol S and biphenol migrated from food cans

Abstract

An environmentally friendly sample pretreatment system based on solid-phase microextraction (SPME) for the sensitive determination of bisphenol A (BPA), bisphenol S (BPS) and biphenol (BP) is described. Two derivatisation reactions to obtain volatile derivatives are compared. Derivatisation with acetic anhydride (AA) was performed in situ in a 5-mM Na2CO3/NaHCO3 buffer solution and analytes were extracted by direct immersion (DI) using a PA fibre (85 µm) at 90°C for 40 min with stirring at 1,500 rpm. For derivatisation with bis-(trimethylsilyl)trifluoroacetamide (BSTFA), the analytes were first extracted by DI using the PA fibre at 70°C for 40 min with stirring at 500 rpm. The fibre was then removed, dried in a nitrogen stream for 2 min and introduced into the headspace of BSTFA at 50°C for 30 s. After derivatisation, the analytes were desorbed in the injection port of the GC in the splitless mode at 280°C for 4 min. The separation was carried out by coupling gas chromatography with mass spectrometry in the selected ion monitoring mode, GC-MS(SIM). The method allowed the determination of the migrating levels of bisphenols found in food cans, and it was validated for linearity, detection and quantitation limits, selectivity, accuracy and precision. Detection limits ranged from 3 to 16 pg mL−1, depending on the compound, at a signal-to-noise ratio of 3. Recoveries obtained for spiked samples were satisfactory for all compounds. Levels of BPA were higher than those of BPS and the lowest contents were found for BP.

The amounts of bisphenols migrated from food cans are very low

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Ballesteros-Gómez A, Rubio S, Pérez-Bendito D (2009) J Chromatogr A 1216:449–469

    Article  Google Scholar 

  2. 2.

    Staples CA, Dom PB, Klecka GM, O’Blook ST, Harris LR (1998) Chemosphere 36:2149–2173

    CAS  Article  Google Scholar 

  3. 3.

    Jeong-Hun K, Fusao K, Yoshiki K (2006) Toxicology 226:79–89

    Article  Google Scholar 

  4. 4.

    Krishnan AV, Stathis P, Permuth SF, Tokes L, Feldman D (1993) Endocrinology 132:2279–2286

    CAS  Article  Google Scholar 

  5. 5.

    Commision Directive 2004/19/EC, Off J Eur Commun L71 8

  6. 6.

    http://www.epa.gov/iris/subst/0356.htm

  7. 7.

    Lambert C, Larroque M (1997) J Chromatogr Sci 35:57–62

    CAS  Article  Google Scholar 

  8. 8.

    Yoshida T, Horie M, Hoshino Y, Nakazawa H (2001) Food Addit Contam 18:69–75

    CAS  Article  Google Scholar 

  9. 9.

    Kang JH, Kondo F (2002) Food Addit Contam 19:886–890

    CAS  Article  Google Scholar 

  10. 10.

    Kang JH, Kondo F (2002) Res Vet Sci 73:177–182

    CAS  Article  Google Scholar 

  11. 11.

    Inoue K, Murayama S, Takeba K, Yoshimura Y, Nakazawa H (2003) J Food Compos Anal 16:497–506

    CAS  Article  Google Scholar 

  12. 12.

    Shao B, Han H, Hu J, Zhao J, Wu G, Xue Y, Ma Y, Zhang S (2005) Anal Chim Acta 530:245–252

    CAS  Article  Google Scholar 

  13. 13.

    Covaci A, Voorspoels S (2005) J Chromatogr B 827:216–223

    CAS  Article  Google Scholar 

  14. 14.

    Kang JH, Kondo F, Katayama Y (2006) Anal Chim Acta 555:114–117

    CAS  Article  Google Scholar 

  15. 15.

    Sun C, Leong LP, Barlow PJ, Chan SH, Bloodworth BC (2006) J Chromatogr A 1129:145–148

    CAS  Article  Google Scholar 

  16. 16.

    Maragou NC, Lampi EN, Thomaidis NS, Koupparis MA (2006) J Chromatogr A 1129:165–173

    CAS  Article  Google Scholar 

  17. 17.

    Kuruto-Niwa R, Tateota Y, Usuki Y, Nozawa R (2007) Chemosphere 66:1160–1164

    CAS  Article  Google Scholar 

  18. 18.

    Gyong Y, Shin JH, Kim HY, Khim J, Lee MK, Hong J (2007) Anal Chim Acta 603:67–75

    Article  Google Scholar 

  19. 19.

    Toyo’oka T, Oshige Y (2000) Anal Sci 16:1071–1076

    Article  Google Scholar 

  20. 20.

    Nerín C, Salafranca J, Aznar M, Batlle R (2009) Anal Bioanal Chem 393:809–833

    Article  Google Scholar 

  21. 21.

    Luque de Castro MD, Luque García JL (2002) Acceleration and automation of solid sample treatment. Elsevier, The Netherlands

    Google Scholar 

  22. 22.

    Pawliszyn J (1997) Solid phase microextraction. Theory and practice. Wiley-VCH, New York

    Google Scholar 

  23. 23.

    Pawliszyn J (ed) (1999) Applications of Solid Phase Microextraction. Royal Institute of Chemistry

  24. 24.

    Salafranca J, Battle R, Nerín C (1999) J Chromatogr A 864:137–144

    CAS  Article  Google Scholar 

  25. 25.

    Chang CM, Chou CC, Lee MR (2005) Anal Chim Acta 539:41–47

    CAS  Article  Google Scholar 

  26. 26.

    Helaleh MIH, Fujii S, Korenaga T (2001) Talanta 54:1039–1047

    CAS  Article  Google Scholar 

  27. 27.

    Braun P, Moeder M, Schhrader S, Popp P, Kuschk P, Engewald W (2003) J Chromatogr A 988:41–51

    CAS  Article  Google Scholar 

  28. 28.

    Basheer C, Parthiban A, Jayaraman A, Kee-Lee H, Valiyaveettil S (2005) J Chromatogr A 1087:274–282

    CAS  Article  Google Scholar 

  29. 29.

    Xiangli L, Li L, Shichun Z, Chongyu L, Tiangang L (2006) Chin J Anal Chem 34:325–328

    Article  Google Scholar 

  30. 30.

    Nerín C, Philo MR, Salafranca J, Castle L (2002) J Chromatogr A 963:375–380

    Article  Google Scholar 

  31. 31.

    del Olmo M, Zafra A, Suárez B, Gónzalez-Casado A, Taoufiki J, Vílchez JL (2005) J Chromatogr B 817:167–172

    Article  Google Scholar 

  32. 32.

    Munguía-López EM, Gerardo-Lugo S, Peralta E, Bolumen S, Soto-Valdez H (2005) Food Addit Contam 22:892–898

    Article  Google Scholar 

  33. 33.

    Biles JE, McNeal TP, Begley TH, Hollifield HC (1997) J Agric Food Chem 45:3541–3544

    CAS  Article  Google Scholar 

  34. 34.

    Biles JE, McNeal TP, Begley TH (1997) J Agric Food Chem 45:4697–4700

    CAS  Article  Google Scholar 

  35. 35.

    McNeal TP, Biles JE, Begley TH, Craun JC, Hopper ML, Sack CA (2000) ACS Symp Ser 747:33–34

    CAS  Article  Google Scholar 

  36. 36.

    D'Antuono A (2001) Campo Dall‘Orto V, Lo Balbo A, Sobral S, Rezzano I. J Agric Food Chem 49:1098–1101

    Article  Google Scholar 

  37. 37.

    Dietz C, Sanz J, Cámara C (2006) J Chromatogr A 1103:183–192

    CAS  Article  Google Scholar 

  38. 38.

    Kuo HW, Ding WH (2004) J Chromatogr A 1027:67–74

    CAS  Article  Google Scholar 

  39. 39.

    Wingender RJ, Niketas P, Switala CK (1998) J Coat Technol 70:75–82

    CAS  Article  Google Scholar 

  40. 40.

    Basheer C, Lee HK, Tan KS (2004) Mar Pollut Bull 48:1145–1167

    Article  Google Scholar 

  41. 41.

    Goodson A, Summerfield W, Cooper I (2002) Food Addit Contam 19:796–802

    CAS  Article  Google Scholar 

  42. 42.

    Thomson BM, Grounds PR (2005) Food Addit Contam 22:65–72

    CAS  Article  Google Scholar 

  43. 43.

    Jin X, Jiang G, Huang G, Liu J, Zhou Q (2004) Chemosphere 56:1113–1119

    CAS  Article  Google Scholar 

  44. 44.

    Stuart JD, Capulong CP, Launer KD, Pan X (2005) J Chromatogr A 1079:136–145

    CAS  Article  Google Scholar 

  45. 45.

    del Olmo M, Gónzalez-Casado A, Navas NA, Vílchez JL (1997) Anal Chim Acta 346:87–92

    Article  Google Scholar 

  46. 46.

    Vílchez JL, Zafra A, Gónzalez-Casado A, Hontoria E, del Olmo M (2001) Anal Chim Acta 431:31–40

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Spanish MEC (Project CTQ2009-08267/BQU) for financial support. N. Martínez-Castillo acknowledges a fellowship from Departamento de Formación del Personal Académico de la Universidad Centroccidental Lisandro Alvarado (Venezuela).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Hernández-Córdoba.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Viñas, P., Campillo, N., Martínez-Castillo, N. et al. Comparison of two derivatization-based methods for solid-phase microextraction–gas chromatography–mass spectrometric determination of bisphenol A, bisphenol S and biphenol migrated from food cans. Anal Bioanal Chem 397, 115–125 (2010). https://doi.org/10.1007/s00216-010-3464-7

Download citation

Keywords

  • Gas chromatography–mass spectrometry
  • Solid-phase microextraction
  • On-fibre derivatisation
  • Bisphenols
  • Food cans