Skip to main content
Log in

Specific molecule localization in microchannel laminar flow and its application for non-immobilized-probe analysis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Microfluidic systems enable superior control of fluidics. We have developed a novel size-separation method utilizing secondary flow within a microchannel. Using confocal fluorescence microscopy and computer simulation, we confirmed that separation occurred as a result of specific molecular localization in the curving part of the microchannel. Maximum separation efficiency was achieved by optimizing microchannel design and flow rate for individual separation targets. In addition, more effective separation was achieved by use of plural microchannel curves. This method was used for sequence-selective DNA sensing. Double-stranded DNA formed by hybridization between target DNA and a complementary probe had different elution profiles from those of the single-stranded non-complementary sequence. Moreover, the response depends on the length of the DNA molecules. This method does not require immobilization of either probe or target DNA, because all reactions occurred in the solution phase. Such features may reduce experimental error and the difference between data from different operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Larive CK, Lunte SM, Zhong M, Perkins MD, Wilson GS, Gokulrangan G, Williams T, Afroz F, Schöneich C, Derrick TS, Middaugh CR, Bogdanowich-Knipp S (1999) Anal Chem 71:389R–423R

    Article  CAS  PubMed  Google Scholar 

  2. Wang H, Hanash SJ (2003) Chromatogr B 787:11–18

    Article  CAS  Google Scholar 

  3. Veenstra TD (1999) Biophys Chem 79:63–79

    Article  CAS  Google Scholar 

  4. Wan KX, Shibue T, Gross ML (2000) J Am Chem Soc 122:300–307

    Article  CAS  Google Scholar 

  5. Wang J (1999) Chem Eur J 5:1681–1685

    Article  CAS  Google Scholar 

  6. Chan X, Zehnbauer B, Gnirke A, Kwok PY (1997) Proc Natl Acad Sci USA 94:10756–10761

    Article  PubMed  Google Scholar 

  7. Dubiley S, Kirilov E, Lysov Y, Mizabekov A (1997) Nucleic Acids Res 25:2259–2265

    Article  CAS  PubMed  Google Scholar 

  8. Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor APA (1994) Proc Natl Acad Sci USA 91:5022–5026

    CAS  PubMed  Google Scholar 

  9. Howell WM, Jobs M, Gyllensten U, Brookes AJ (1999) Nat Biotechnol 17:87–88

    Article  CAS  PubMed  Google Scholar 

  10. Hashimoto K, Ito K, Ishimori Y (1994) Anal Chem 66:3830–3833

    Article  CAS  PubMed  Google Scholar 

  11. Boon EM, Ceres DM, Drummond TG, Hill MG, Barton JK (2000) Nat Biotechnol 18:1096–1100

    Article  CAS  PubMed  Google Scholar 

  12. Takenaka S, Yamashita K, Takagi M, Uto Y, Kondo H (2000) Anal Chem 72:1334–1341

    Article  CAS  PubMed  Google Scholar 

  13. Marrazza G, Chiti G, Maschini M, Anichini M (2000) Clin Chem 46:31–37

    CAS  PubMed  Google Scholar 

  14. Yamashita K, Yamaguchi Y, Miyazaki M, Nakamura H, Shimizu H, Maeda H (2004) Chem Eng J 101:157–161

    Article  CAS  Google Scholar 

  15. Kenis PJA, Ismagilov RF, Whitesides GM (1999) Science 285:83–85

    Article  CAS  PubMed  Google Scholar 

  16. Weigl BH, Yager P (1999) Science 283:346–347

    Article  Google Scholar 

  17. Tokeshi M, Minagawa T, Uchiyama K, Hibara A, Sato K, Hisamoto H, Kitamori T (2002) Anal Chem 74:1565–1571

    Article  CAS  PubMed  Google Scholar 

  18. Yamashita K, Yamaguchi Y, Miyazaki M, Nakamura H, Shimizu H, Maeda H (2004) Lab Chip 4:1–3

    Article  CAS  PubMed  Google Scholar 

  19. Kawazumi H, Tashiro A, Ogino K, Maeda H (2002) Lab Chip 1:8–10

    Article  Google Scholar 

  20. Marin MC, Jost CA, Brooks LA, Irwin MS, O’Nions J, Tidy JA, James N, McGregor JM, Harwood CA, Yulug IG, Vousden KH, Allday MJ, Gusterson B, Ikawa S, Hinds PW, Crook T, Kaelin WG Jr (2000) Nat Genet 25:47–54

    Article  CAS  PubMed  Google Scholar 

  21. Kovacs GTA (1998) Micromachined transducer sourcebook. McGraw–Hill, Boston

    Google Scholar 

  22. Ismagilov RF, Stroock AD, Kenis PAJ, Whitesides GM (2000) Appl Phys Lett 76:2376–2378

    Article  CAS  Google Scholar 

  23. Tanford C (1961) Physical chemistry of macromolecules. Wiley, New York

    Google Scholar 

  24. Atkins PW (1990) Physical chemistry, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  25. Yamaguchi Y, Takagi F, Yamashita K, Maeda H (2004) AIChE J 50:1530–1535

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Makoto Takagi of Kyushu University for helpful discussion. This study was supported by Industrial Technology Research Grant Program from NEDO. This work was also supported in part by grants from MEXT of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Maeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, K., Ogura, D., Yamaguchi, Y. et al. Specific molecule localization in microchannel laminar flow and its application for non-immobilized-probe analysis. Anal Bioanal Chem 382, 1477–1483 (2005). https://doi.org/10.1007/s00216-005-3368-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3368-0

Keywords

Navigation