Skip to main content
Log in

Using electrical impedance detection to evaluate the viability of biomaterials subject to freezing or thermal injury

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper is aimed at comprehensively investigating the dynamic low-frequency electrical impedance (DLFI) of biological materials during the processes of freezing, thawing and heating, and combinations of them. Electrical impedance detection (EID) was proposed as a means of rapidly evaluating the viability of biological materials subject to freezing or thermal injury (processes expected to be significant in the practices of cryobiology and hyperthermia). Using two experimental setups, the DLFI for selected biological materials (fresh pork and fish) under various freezing and heating conditions was systematically measured and analyzed. Preliminary results demonstrate that damage that occurs to a biological material due to freezing or heating could result in a significant deviation in its electric impedance value from that of undamaged biomaterials. Monitoring impedance change ratios under various freezing and heating conditions may offer an alternative strategy for assessing the amount of damage sustained by biomaterials subject to cryosurgery, cryo-preservation and hyperthermia. Implementation of the present method in order to develop a new micro-analysis or biochip system is also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mazur P (1970) Science 168:939–949

    CAS  PubMed  Google Scholar 

  2. Pivert PJ, Binder P, Ougier T (1977) Cryobiology 14:245–250

    PubMed  Google Scholar 

  3. Poletaev LI, Makeev YV, Mikhailov VA (1992) Med Prog Technol 18:91–94

    CAS  PubMed  Google Scholar 

  4. Otten DM, Rubinsky B (2000) IEEE T Bio-med Eng 47:1376–1381

    Google Scholar 

  5. Hahn G (1982) Hyperthermia and cancer. Plenum, New York

  6. Watmough JG, Ross WM (1986) Hyperthermia. Blackie, London

  7. Liu J, Zhou YX (2003) Anal Bioanal Chem 377:173–181

    Article  CAS  PubMed  Google Scholar 

  8. Kinouchi Y, Iritani T, Morimoto T, Ohyama S (1997) Med Biol Eng Comput 35:486–492

    CAS  PubMed  Google Scholar 

  9. Kun S, Peura R (2000) IEEE T Bio-med Eng 47:163–169

    Google Scholar 

  10. van Kreel BK (2001) Med Biol Eng Comput 39:551–557

    PubMed  Google Scholar 

  11. Slager CJ, Phaff AC, Essed CE, Bom N, Schuurbiers JH, Serruys PW (1992) IEEE T Bio-med Eng 39:411–418

    Google Scholar 

  12. van Kreel BK, Reyven N, Soeters P (1998) Med Biol Eng Comput 36:337–345

    PubMed  Google Scholar 

  13. Jossinet J (1996) Med Biol Eng Comput 34:346–350

    PubMed  Google Scholar 

  14. Eyuboglu BM, Pilkington TC, Wolf PD (1994) Phys Med Biol 39:1–17

    Article  CAS  PubMed  Google Scholar 

  15. Yu TH, Zhou YX, Liu J (2003) Int J Thermophys 24:513–531

    Article  CAS  Google Scholar 

  16. Zou Y, Guo X (2003) Med Eng Phys 25:79–90

    Article  CAS  PubMed  Google Scholar 

  17. Pethig R (1987) Clin Phys Physiol M 8:5-12

    Article  Google Scholar 

  18. Cao H, Tungjitkusolmun S, Choy BY, Tsai JZ, Vorperian VR, Webster JG (2002) IEEE T Bio-med Eng 49:247–253

    Google Scholar 

  19. Yang HW, Peng HH, Chang HC, Shen YS, Wu CL, Chang CH (2000) Cryobiology 40:159–170

    Article  CAS  PubMed  Google Scholar 

  20. Rush S, Abildskov JA, McFee R (1963) Circ Res 12:40–50

    CAS  PubMed  Google Scholar 

  21. Zhang MIN, Willison JHM (1989) Acta Bot Neerl 38:279

    Google Scholar 

  22. Rubinsky B (1997) Exp Heat Transfer 10:1–29

    CAS  Google Scholar 

  23. Hubel A, Toner M, Cravalho EG, Yarmush ML, Tompkins RG (1991) Biotechnol Progr 7:554–559

    CAS  Google Scholar 

  24. Knight CA (2000) Nature 406:249–251

    Article  CAS  PubMed  Google Scholar 

  25. Gomez R, Bashir R, Sarikaya A, Ladisch MR, Sturgis J, Robinson JP, Geng T, Bhunia AK, Apple HL, Wereley S (2001) Biomed Microdevices 3:201–209

    Article  CAS  Google Scholar 

  26. Deverkadra RR, McShane MJ (2002) In: Proc 24th Annu Int Conf IEEE Eng Med Biol Soc, 23–26 October 2002, Houston, TX, 2:1720–1721

  27. Voldman J, Gray ML, Schmidt MA (1999) Annu Rev Biomed Eng 1:401–425

    Article  CAS  PubMed  Google Scholar 

  28. Suehiro J, Hamada R, Noutomi D, Shutou M, Hara M (2003) J Electrostat 57:157–168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, TH., Liu, J. & Zhou, YX. Using electrical impedance detection to evaluate the viability of biomaterials subject to freezing or thermal injury. Anal Bioanal Chem 378, 1793–1800 (2004). https://doi.org/10.1007/s00216-004-2508-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2508-2

Keywords

Navigation