Skip to main content
Log in

Chemical reactivity studies by the natural orbital functional second-order Møller–Plesset (NOF-MP2) method: water dehydrogenation by the scandium cation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The reliability of the recently proposed natural orbital functional supplemented with second-order Møller–Plesset calculations (NOF-MP2) has been assessed for the mechanistic studies of elementary reactions of transition metal compounds by investigating the dehydrogenation of water by the scandium cation. Both high- and low-spin state potential energy surfaces have been searched thoroughly. Special attention has been paid to the assessment of the capability of the NOF-MP2 method to describe the strong, both static and dynamic, electron correlation effects on the reactivity of Sc\(^{+}\)(\(^{3}\)D, \(^{1}\)D) with water. In agreement with experimental observations, our calculations correctly predict that the only exothermic products are the lowest-lying ScO\(^{+} (^{1}{\Sigma })\) and H\(_{2}(^{1}{\Sigma }_{g}^{+})\) species. Nevertheless, an in-depth analysis of the reaction paths leading to several additional products was carried out, including the characterization of various minima and several key transition states. Our results have been compared with the highly accurate multiconfigurational supplemented with quasi-degenerated perturbation theory, MCQDPT, wavefunction-type calculations, and the available experimental data. It is observed that NOF-MP2 is able to give a satisfactorily quantitative agreement, with a performance on par with that of the MCQDPT method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. ...Oström H, Öberg H, Xin H, LaRue J, Beye M, Dell'Angela M, Gladh J, Ng ML, Sellberg JA, Kaya S, Mercurio G, Nordlund D, Hantschmann M, Hieke F, Kühn D, Schlotter WF, Dakovski GL, Turner JJ, Minitti MP, Mitra A, Moeller SP, Föhlisch A, Wolf M, Wurth W, Persson M, Nørskov JK, Abild-Pedersen F, Ogasawara H, Pettersson LGM, Nilsson A (2015) Probing the transition state region in catalytic CO oxidation on RU. Science 347(6225):978. https://doi.org/10.1126/science.1261747

    Article  CAS  PubMed  Google Scholar 

  2. Koch W, Holthausen MH (2001) A chemist's handbook to density functional theory. Wiley, Weinheim

    Book  Google Scholar 

  3. Schwarz H (2011) Chemistry with methane: concepts rather than recipes. Angew Chem Int Ed 50(43):10096. https://doi.org/10.1002/anie.201006424

    Article  CAS  Google Scholar 

  4. Božović A, Feil S, Koyanagi GK, Viggiano AA, Zhang X, Schlangen M, Schwarz H, Bohme DK (2010) Conversion of methane to methanol: nickel, palladium, and platinum (d9) cations as catalysts for the oxidation of methane by ozone at room temperature. Chem Eur J 16(38):11605. https://doi.org/10.1002/chem.201000627

    Article  CAS  PubMed  Google Scholar 

  5. Mó O, Yáñez M, Salpin JY, Tortajada J (2007) Thermochemistry, bonding, and reactivity of ni+ and ni2+ in the gas phase. Mass Spectrom Rev 26(4):474. https://doi.org/10.1002/mas.20134

    Article  CAS  PubMed  Google Scholar 

  6. Lakuntza O, Matxain JM, Ugalde JM (2010) Quantum chemical study of the reaction between ni+ and h2s. ChemPhysChem 11(14):3172. https://doi.org/10.1002/cphc.200901020

    Article  CAS  PubMed  Google Scholar 

  7. Kretschmer R, Schlangen M, Schwarz H (2012) Mechanistic aspects and elementary steps of nh bond activation of ammonia and cn coupling induced by gas-phase ions: a combined experimental/computational exercise. Chem Eur J 18(1):40. https://doi.org/10.1002/chem.201102494

    Article  CAS  PubMed  Google Scholar 

  8. Lakuntza O, Matxain JM, Ruipérez F, Ugalde JM, Armentrout PB (2013) Quantum chemical study of the reactions between pd+/pt+ and h2o/h2s. Chem Eur J 19(27):8832. https://doi.org/10.1002/chem.201300222

    Article  CAS  PubMed  Google Scholar 

  9. Clemmer DE, Aristov N, Armentrout PB (1993) Reactions of scandium oxide (ScO+), titanium oxide (TiO+) and vanadyl (VO+) with deuterium: M+-OH bond energies and effects of spin conservation. J Phys Chem 97(3):544. https://doi.org/10.1021/j100105a005

    Article  CAS  Google Scholar 

  10. Irigoras A, Fowler JE, Ugalde J (1999) Reactivity of Sc + ( \(^3 D\), \(^1 D\)) and V + ( \(^5 D\), \(^3 F\)): reaction of Sc + and V + with water. J Am Chem Soc 121:574. https://doi.org/10.1021/ja9805829

    Article  CAS  Google Scholar 

  11. Irigoras A, Fowler JE, Ugalde JM (1999) Reactivity of Cr+(6S,4D), Mn+(7S,5S), and Fe+(6D,4F): reaction of Cr+, Mn+, and Fe+ with water. J Am Chem Soc 121(37):8549. https://doi.org/10.1021/ja984469u

    Article  CAS  Google Scholar 

  12. Irigoras A, Elizalde O, Fowler JE, Ugalde JM (2000) Reactivity of Co+ (3 F, 5 F), Ni+ (2 D, 4 F), and Cu+ (1 S, 3 D): reaction of Co+, Ni+, and Cu+ with water. J Am Chem Soc 121:114

    Article  Google Scholar 

  13. Chiodo S, Kondakova O, Michelini MDC, Russo N, Sicilia E, Irigoras A, Ugalde JM (2004) Theoretical study of two-state reactivity of transition metal cations: the difficult case of iron ion interacting with water, ammonia, and methane. J Phys Chem A 108(6):1069. https://doi.org/10.1021/jp036558l

    Article  CAS  Google Scholar 

  14. Shaik S (2020) Two-state reactivity: personal recounting of its conception and future prospects. Israel J Chem 60(10–11):938. https://doi.org/10.1002/ijch.202000002

    Article  CAS  Google Scholar 

  15. Armentrout PB (1991) Chemistry of excited electronic states. Science 251:175. https://doi.org/10.1126/science.251.4990.175

    Article  CAS  PubMed  Google Scholar 

  16. Mercero JM, Matxain JM, Lopez X, York DM, Largo A, Eriksson LA, Ugalde JM (2005) Theoretical methods that help understanding the structure and reactivity of gas phase ions. Int J Mass Spectrom 240:37. https://doi.org/10.1016/j.ijms.2004.09.018

    Article  CAS  Google Scholar 

  17. Gilbert TL (1975) Hohenberg-Kohn theorem for nonlocal external potentials. Phys Rev B 12:2111. https://doi.org/10.1103/PhysRevB.12.2111

    Article  Google Scholar 

  18. Levy M (1979) Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proceed Natl Acad Sci USA 76(12):6062. https://doi.org/10.1088/0022-3719/12/3/015

    Article  CAS  Google Scholar 

  19. Valone SM (1980) Consequences of extending 1 matrix energy functionals pure-state representable to all ensemble representable 1 matrices. J Chem Phys 73(3):1344

    Article  Google Scholar 

  20. Mitxelena I, Piris M, Ugalde JM (2019) In: Hoggan P, Ancarani U (eds) State Art Mol. Electron. Struct. Comput. Correl. Methods, Basis Sets More, Advances in Quantum Chemistry, chap. 7, pp 155–177. Academic Press. https://doi.org/10.1016/bs.aiq.2019.04.001

  21. Piris M (2007) In: Mazziotti DA (ed) Reduced-density-matrix mechanics: with applications to many-electron atoms and molecules, chap. 14, pp 387–427. Wiley, Hoboken. https://doi.org/10.1002/0470106603

  22. Piris M, Ugalde JM (2014) Perspective on natural orbital functional theory. Int J Quant Chem 114(18):1169. https://doi.org/10.1002/qua.24663

    Article  CAS  Google Scholar 

  23. Pernal K, Giesbertz KJH (2016) Reduced density matrix functional theory (RDMFT) and linear response time-dependent RDMFT (TD-RDMFT). Top Curr Chem 368:125. https://doi.org/10.1007/128_2015_624

    Article  CAS  PubMed  Google Scholar 

  24. Piris M (2018) In: Angilella GGN, Amovilli C (eds) Many-body approaches at different scales: a tribute to N. H. March on the occasion of his 90th birthday, chap. 22, pp 283–300. Springer, New York

  25. Piris M (2018) In: Chakraborty T, Carbó-Dorca R (eds) Theoretical and quantum chemistry at the dawn of the 21st century, chap. 22, pp 593–620. Apple Academic Press, New Jersey

  26. Piris M, Mitxelena I (2021) Donof: an open-source implementation of natural-orbital-functional-based methods for quantum chemistry. Comput Phys Commun 259:107651. https://doi.org/10.1016/j.cpc.2020.107651

    Article  CAS  Google Scholar 

  27. Mitxelena I, Piris M (2020) An efficient method for strongly correlated electrons in one dimension. J Phys Condens Matter. https://doi.org/10.1088/1361-648X/ab6d11

    Article  PubMed  Google Scholar 

  28. Mitxelena I, Piris M (2020) An efficient method for strongly correlated electrons in two dimensions. J Chem Phys 152:064108. https://doi.org/10.1063/1.5140985

    Article  CAS  PubMed  Google Scholar 

  29. Piris M (2017) Global method for electron correlation. Phys Rev Lett 119:063002. https://doi.org/10.1103/PhysRevLett.119.063002

    Article  PubMed  Google Scholar 

  30. Piris M (2019) Natural orbital functional for multiplets. Phys Rev A 100:032508. https://doi.org/10.1103/PhysRevA.100.032508

    Article  CAS  Google Scholar 

  31. Piris M (2018) Dynamic electron-correlation energy in the natural-orbital-functional second-order-Møller-Plesset method from the orbital-invariant perturbation theory. Phys Rev A 98:022504. https://doi.org/10.1103/PhysRevA.98.022504

    Article  CAS  Google Scholar 

  32. Lopez X, Piris M (2019) Performance of the NOF-MP2 method in hydrogen abstraction reactions. Theor Chem Acc 138:89. https://doi.org/10.1007/s00214-019-2475-5

    Article  CAS  Google Scholar 

  33. Barca GMJ, Bertoni C, Carrington L, Datta D, De Silva N, Deustua JE, Fedorov DG, Gour JR, Gunina AO, Guidez E, Harville T, Irle S, Ivanic J, Kowalski K, Leang SS, Li H, Li W, Lutz JJ, Magoulas I, Mato J, Mironov V, Nakata H, Pham BQ, Piecuch P, Poole D, Pruitt SR, Rendell AP, Roskop LB, Ruedenberg K, Sattasathuchana T, Schmidt MW, Shen J, Slipchenko L, Sosonkina M, Sundriyal V, Tiwari A, Galvez Vallejo JL, Westheimer B, Wloch M, Xu P, Zahariev F, Gordon MS (2020) Recent developments in the general atomic and molecular electronic structure system. J Chem Phys 152(15):154102. https://doi.org/10.1063/5.0005188

    Article  CAS  PubMed  Google Scholar 

  34. Pierloot K (2001) In: Cundari TR (ed) Computational organometallic chemistry, pp 123–158. Marcel Dekker Inc., New York

  35. Keller S, Boguslawski K, Janowski T, Reiher M, Pulay P (2015) Selection of active spaces for multiconfigurational wavefunctions. J Chem Phys. https://doi.org/10.1063/1.4922352

    Article  PubMed  Google Scholar 

  36. Schafer A, Huber C, Alrichs R (1992) J Chem Phys 97:2571

    Article  Google Scholar 

  37. Schafer A, Huber C, Alrichs R (1994) J Chem Phys 100:5829

    Article  Google Scholar 

  38. Hay PJ (1977) J Chem Phys 66:4377

    Article  CAS  Google Scholar 

  39. Watchers AJH (1970) J Chem Phys 52:1033

    Article  Google Scholar 

  40. Raghavachari K, Trucks GW (1989) Highly correlated systems. Excitation energies of first row transition metals sc–cu. J Chem Phys 91: 1062. https://doi.org/10.1063/1.457230

  41. Coleman AJ (1963) Structure of fermion density matrices. Rev Mod Phys 35:668

    Article  Google Scholar 

  42. Piris M, Matxain JM, Lopez X, Ugalde JM (2010) Communication: the role of the positivity N-representability conditions in natural orbital functional theory. J Chem Phys 133:111101. https://doi.org/10.1063/1.3481578

    Article  CAS  PubMed  Google Scholar 

  43. Mazziotti DA (2012) Structure of fermionic density matrices: complete N-representability conditions. Phys Rev Lett 108(26):263002. https://doi.org/10.1103/PhysRevLett.108.263002

    Article  CAS  PubMed  Google Scholar 

  44. Mitxelena I, Rodríguez-Mayorga M, Piris M (2018) Phase dilemma in natural orbital functional theory from the N-representability perspective. Eur Phys J B 91:109. https://doi.org/10.1140/epjb/e2018-90078-8

    Article  CAS  Google Scholar 

  45. Tilson JL, Harrison JF (1991) Electronic and geometric structures of various products of the Scandium++ water reaction. J Phys Chem 95:5097

    Article  CAS  Google Scholar 

  46. Ye S (1997) Theoretical study of the dehydrogenation reaction of water by Sc+. Theochem 417:157

    Article  CAS  Google Scholar 

  47. Sugar J, Corliss C (1985) Atomic energy levels of the iron-period elements: potassium through nickel. J Phys Chem Ref Data 14(Suppl. 2):1–664

    CAS  Google Scholar 

  48. Magnera TF, David DE, Michl J (1989) Gas-phase water and hydroxyl binding energies for monopositive first-row transition metal ions. J Am Chem Soc 111(11):4100. https://doi.org/10.1021/ja00193a051

    Article  CAS  Google Scholar 

  49. Aristov N, Armentrout PB (1984) Bond energy-bond order relations in transition-metal bonds: vanadium. J Am Chem Soc 106(14):4065. https://doi.org/10.1021/ja00326a049

    Article  CAS  Google Scholar 

  50. Chen YM, Clemmer DE (1994) Kinetic and electronic energy dependence of the reactions of Sc+ and Ti+ with D2O. J Phys Chem 98:11490

    Article  CAS  Google Scholar 

  51. Carnegie PD, Bandyopadhyay B, Duncan MA (2011) Infrared spectroscopy of Sc+(H2O) and Sc 2(H2O) via argon complex predissociation: the charge dependence of cation hydration. J Chem Phys. https://doi.org/10.1063/1.3515425

    Article  PubMed  Google Scholar 

  52. “molecular vibrational frequencies”, in nist chemistry webbook, edited by p. j. linstrom and w.g. mallard (national institute of standards and technology, gaithersburg, md, 2010). http://webbook.nist. gov

  53. Russo N, Sicilia E (2001) Reaction of Sc+ (1D,3D) with H2O, NH3, and CH4: a density functional study. J Am Chem Soc 123(11):2588. https://doi.org/10.1021/ja000658c

    Article  CAS  PubMed  Google Scholar 

  54. Jmol: an open-source java viewer for chemical structures in 3d. http://www.jmol.org/

Download references

Acknowledgements

The authors thank for technical and human support provided by IZO-SGI SGIker of UPV/EHU and European funding (ERDF and ESF) and DIPC for the generous allocation of computational resources. Financial support comes from the Spanish Office for Scientific Research (MCIU /AEI /FEDER, UE), Ref. PGC2018-097529-B-100, and Eusko Jaurlaritza (Basque Government), Ref. IT1254-19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Piris.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles “Festschrift in honour of Prof. Ramon Carbó-Dorca”.

Financial support comes from MCIU/AEI/FEDER, UE (PGC2018-097529-B-100) and Eusko Jaurlaritza (Ref. IT1254-19).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercero, J.M., Ugalde, J.M. & Piris, M. Chemical reactivity studies by the natural orbital functional second-order Møller–Plesset (NOF-MP2) method: water dehydrogenation by the scandium cation. Theor Chem Acc 140, 74 (2021). https://doi.org/10.1007/s00214-021-02775-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02775-4

Keywords

PACS

Navigation