Skip to main content
Log in

Fluxional bis(phenoxy-imine) Zr and Ti catalysts for polymerization

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Bis(phenoxy-imine) complexes of zirconium or titanium, a type of Fenokishi-Imin catalysts, allow the production of polyethylenes with well-defined bimodal molecular weight distributions. Interestingly, by substitution of phenyl rings in the bis(phenoxy-imine) ligands by perfluorinated phenyl rings, the polymerization reaches a desired unimodal behavior. These catalysts have three isomers of similar energy that can be easily interconverted. It is likely that the bimodal behavior is due to the coexistence of more than one isomer in the reaction vessel. Here, we perform static and dynamic DFT calculations to understand the isomerization of the catalytic active species. We analyze the relative Gibbs energies of the different isomers and the barriers for the isomerization processes. Further characterization of the isomers is obtained through stereo maps, aromaticity measures, and NCI plots. Our results show that by changing the phenyl group by a perfluorinated phenyl ring, one of the isomers is particularly stabilized, thus explaining the unimodal behavior of the polyethylene production process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fink G, Mülhaupt R, Brintzinger HH (1995) Ziegler catalysts: recent scientific innovations and technological improvement. Springer, Berlin

    Google Scholar 

  2. Bochmann M (1996) Cationic Group 4 metallocene complexes and their role in polymerisation catalysis: the chemistry of well defined Ziegler catalysts. J Chem Soc Dalton Trans 3:255–270

    Google Scholar 

  3. Brintzinger HH, Fischer D, Mülhaupt R, Rieger B, Waymouth R (1995) Stereospecific olefin polymerization with chiral metallocene catalysts. Angew Chem Int Ed Engl 34:1143–1170

    CAS  Google Scholar 

  4. Ittel SD, Johnson LK, Brookhart M (2000) Late-metal catalysts for ethylene homo- and copolymerization. Chem Rev 100:1169–1204

    CAS  PubMed  Google Scholar 

  5. Ahmed SM, Poater A, Childers MI, Widger PCB, LaPointe AM, Lobkovsky EB, Coates GW, Cavallo L (2013) Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: a mechanistic study. J Am Chem Soc 135:18901–18911

    CAS  PubMed  Google Scholar 

  6. Rünzi T, Tristschler U, Roesle P, Gottker-Schnetmann I, Moller HM, Caporaso L, Poater A, Cavallo L, Mecking S (2012) Activation and deactivation of neutral palladium(II) phosphinesulfonato polymerization catalysts. Organometallics 31:8388–8406

    Google Scholar 

  7. Bahri-Laleh N, Poater A, Cavallo L, Mirmohammadi SA (2014) Exploring the mechanism of Grignard metathesis polymerization of 3-alkylthiophenes. Dalton Trans 43:15143–15150

    CAS  PubMed  Google Scholar 

  8. Britovsek GJP, Gibson VC, Wass DF (1999) The search for new-generation olefin polymerization catalysts: life beyond metallocenes. Angew Chem Int Ed 38:428–447

    CAS  Google Scholar 

  9. Small BL, Brookhart M, Bennett AM (1998) Highly active iron and cobalt catalysts for the polymerization of ethylene. J Am Chem Soc 120:4049–4050

    CAS  Google Scholar 

  10. Britovsek GJP, Bruce M, Gibson VC, Kimberley BS, Maddox PJ, Mastroianni S, McTavish SJ, Williams DJ (1999) Iron and cobalt ethylene polymerization catalysts bearing 2,6-bis(imino)pyridyl ligands: synthesis, structures, and polymerization studies. J Am Chem Soc 121:8728–8740

    CAS  Google Scholar 

  11. Patel K, Chikkali SH, Sivaram S (2020) Ultrahigh molecular weight polyethylene: catalysis, structure, properties, processing and applications. Prog Polym Sci 109:101290

    CAS  Google Scholar 

  12. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782

    PubMed  PubMed Central  Google Scholar 

  13. Copéret C, Chabanas M, Petroff Saint-Arroman R, Basset J-M (2003) Surface organometallic chemistry: homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. Angew Chem Int Ed 42:156–181

    Google Scholar 

  14. Bahri-Laleh N, Hanifpour A, Mirmohammadi SA, Poater A, Nekoomanesh-Haghighi M, Talarico G, Cavallo L (2018) Computational modeling of heterogeneous Ziegler-Natta catalysts for olefins polymerization. Prog Polym Sci 84:89–114

    CAS  Google Scholar 

  15. Poater A, Cavallo L (2009) Comparing families of olefin polymerization precatalysts using the percentage of buried volume. Dalton Trans 41:8878–8883

    Google Scholar 

  16. Gibson VC, Spitzmesser SK (2003) Advances in non-metallocene olefin polymerization catalysis. Chem Rev 103:283–315

    CAS  PubMed  Google Scholar 

  17. Theopold KH (1998) Homogeneous chromium catalysts for olefin polymerization. Eur J Inorg Chem 1:15–24

    Google Scholar 

  18. Fallah M, Bahri-Laleh N, Didehban K, Poater A (2020) Interaction of common cocatalysts in Ziegler-Natta catalyzed olefin polymerization. Appl Organomet Chem 34:e5333

    CAS  Google Scholar 

  19. Kaminsky W, Sinn H (2013) Methylaluminoxane: key component for new polymerization catalysts. Adv Polym Sci 258:1–28

    CAS  Google Scholar 

  20. Sinn H, Kaminsky W (1980) Ziegler-Natta catalysis. Adv Organomet Chem 18(3):99–14

    CAS  Google Scholar 

  21. Reardon D, Conan F, Gambarotta S, Yap GPA, Wang Q (1999) Life and death of an active ethylene polymerization catalyst. Ligand involvement in catalyst activation and deactivation. Isolation and characterization of two unprecedented neutral and anionic vanadium(I) alkyls. J Am Chem Soc 121:9318–9325

    CAS  Google Scholar 

  22. Murtuza S, Casagrande OL Jr, Jordan RF (2002) Ethylene polymerization behavior of tris(pyrazolyl)borate titanium(IV) complexes. Organometallics 21:1882–1890

    CAS  Google Scholar 

  23. Littke A, Sleiman N, Bensimon C, Richeson DS, Yap GPA, Browm SJ (1998) Bulky bis(alkylamidinate) complexes of group 4 syntheses and characterization of M(CyNC(R‘)NCy)2Cl2 and Zr(CyNC(Me)NCy)2Me2 (R‘= Me, M = Ti, Zr, Hf; R‘ = tBu, M = Zr). Organometallics 17:446–451

    CAS  Google Scholar 

  24. Wang C, Friedrich S, Younkin TR, Li RT, Grubbs RH, Bansleben DA, Day MW (1998) Neutral nickel(II)-based catalysts for ethylene polymerization. Organometallics 17:3149–3151

    CAS  Google Scholar 

  25. Gibson VC, Kimberley BS, White AJP, Williams DJ, Howard P (1998) High activity ethylene polymerisation catalysts based on chelating diamide ligands. Chem Commun 3:313–314

    Google Scholar 

  26. Read DJ, Soares JBP (2003) Derivation of the distributions of long chain branching, molecular weight, seniority, and priority for polyolefins made with two metallocene catalysts. Macromolecules 36:10037–10051

    CAS  Google Scholar 

  27. Dagnillo L, Soares JBP, Penlidis A (1998) Effect of operating conditions on the molecular weight distribution of polyethylene synthesized by soluble metallocene/methylaluminoxane catalysts. Macromol Chem Phys 199:955–962

    CAS  Google Scholar 

  28. Manivannan R, Sundararajan G (2002) Latent bimodal polymerization of 1-hexene by a titanium-based diastereomeric catalyst containing a rac/meso-aminodiol ligand. Macromolecules 35:7883–7890

    CAS  Google Scholar 

  29. Reb A, Alt HG (2001) Diastereomeric amido functionalized ansa half-sandwich complexes of titanium and zirconium as catalyst precursors for ethylene polymerization to give resins with bimodal molecular weight distributions. J Mol Catal A Chem 174:35–49

    CAS  Google Scholar 

  30. Müller C, Lilge D, Kristen MO, Jutzi P (2000) Dialkylaminoethyl-functionalized ansa-zirconocene dichlorides: precatalysts for the regulation of the molecular weight distribution of polyethylene. Angew Chem Int Ed 39:789–792

    Google Scholar 

  31. Mitani M, Nakano T, Fujita T (2003) Unprecedented living olefin polymerization derived from an attractive interaction between a ligand and a growing polymer chain. Chem Eur J 9:2396–2403

    CAS  PubMed  Google Scholar 

  32. Makio H, Kashiwa N, Fujita T (2002) FI catalysts: a new family of high performance catalysts for olefin polymerization. Adv Synth Catal 344:477–493

    CAS  Google Scholar 

  33. Hanifpour A, Bahri-Laleh N, Nekoomanesh-Haghighi M, Poater A (2020) Coordinative chain transfer polymerization of 1-decene in the presence of a Ti-based diamine bis(phenolate) catalyst: a green approach to produce low viscosity PAOs. Green Chem 22:4617–4626

    CAS  Google Scholar 

  34. Hanifpour A, Bahri-Laleh N, Nekoomanesh-Haghighi M, Poater A (2020) Group IV diamine bis(phenolate) catalysts for 1-decene oligomerization. Mol Catal 493:111047

    CAS  Google Scholar 

  35. Nakayama Y, Bando H, Sonobe Y, Kaneko H, Kashiwa N, Fujita T (2003) New olefin polymerization catalyst systems comprised of bis(phenoxy-imine) titanium complexes and MgCl2-based activators. J Catal 215:171–175

    CAS  Google Scholar 

  36. Nakayama Y, Bando H, Sonobe Y, Fujita T (2004) Development of single-site new olefin polymerization catalyst systems using MgCl2-based activators: MAO-free MgCl2-supported FI catalyst systems. Bull Chem Soc Jpn 77:617–625

    CAS  Google Scholar 

  37. Matsui S, Mitani M, Saito J, Tohi Y, Makio H, Matsukawa N, Takagi Y, Tsuru K, Nitabaru M, Nakano T, Tanaka H, Kashiwa N, Fujita T (2001) A family of zirconium complexes having two phenoxy-imine chelate ligands for olefin polymerization. J Am Chem Soc 123:6847–6856

    CAS  Google Scholar 

  38. Mitani M, Mohri J, Yoshida Y, Saito J, Ishii S, Tsuru K, Matsui S, Furuyama R, Nakano T, Tanaka H, Kojoh S, Matsugi T, Kashiwa N, Fujita T (2002) Living polymerization of ethylene catalyzed by titanium complexes having fluorine-containing phenoxy-imine chelate ligands. J Am Chem Soc 124:3327–3336

    CAS  PubMed  Google Scholar 

  39. Saito J, Mitani M, Mohri J, Yoshida Y, Matsui S, Ishii S, Kojoh S, Kashiwa N, Fujita T (2001) Living polymerization of ethylene with a titanium complex containing two phenoxy-imine chelate ligands. Angew Chem Int Ed 40:2918–2920

    CAS  Google Scholar 

  40. Nakayama Y, Bando H, Sonobe Y, Suzuki Y, Fujita T (2003) Highly active, thermally robust V-based new olefin polymerization catalyst system. Chem Lett 32:766–767

    CAS  Google Scholar 

  41. Mitani M, Furuyama R, Mohri J, Saito J, Ishii S, Terao H, Nakano T, Tanaka H, Fujita T (2003) Syndiospecific living propylene polymerization catalyzed by titanium complexes having fluorine-containing phenoxy-imine chelate ligands. J Am Chem Soc 125:4293–4305

    CAS  PubMed  Google Scholar 

  42. Suzuki Y, Terao H, Fujita T (2003) Recent advances in phenoxy-based catalysts for olefin polymerization. Bull Chem Soc Jpn 76:1493–1517

    CAS  Google Scholar 

  43. Busico V, Cipullo R, Cutillo F, Friederichs N, Ronca S, Wang B (2003) Improving the performance of methylalumoxane: a facile and efficient method to trap “free” trimethylaluminum. J Am Chem Soc 125:12402–12403

    CAS  PubMed  Google Scholar 

  44. Lopez-Sanchez JA, Lamberti M, Pappalardo D, Pellecchia C (2003) Syndiospecific polymerization of propene promoted by bis(salicylaldiminato)titanium catalysts: regiochemistry of monomer insertion and polymerization mechanism. Macromolecules 36:9260–9263

    CAS  Google Scholar 

  45. Tohi Y, Makio H, Matsui S, Onda M, Fujita T (2003) Polyethylenes with uni-, bi-, and trimodal molecular weight distributions produced with a single bis(phenoxy−imine)zirconium complex. Macromolecules 36:523–525

    CAS  Google Scholar 

  46. Tohi Y, Nakano T, Makio H, Matsui S, Fujita T, Yamaguchi T (2004) Polyethylenes having well-defined bimodal molecular weight distributions formed with bis(phenoxy-imine) Zr complexes. Macromol Chem Phys 205:1179–1186

    CAS  Google Scholar 

  47. Saha S, Takayanagi M, Matsumoto K, Sankaran SK, Tanaka Y, Koga N, Nagaoka M (2018) Probing the most stable isomer of zirconium bis(phenoxy-imine) cation: a computational investigation. J Phys Chem A 122:2198–2208

    CAS  PubMed  Google Scholar 

  48. Ehm C, Zaccaria F, Cipullo R (2019) From mechanistic investigation to quantitative prediction: kinetics of homogeneous transition metal-catalyzed alpha-olefin. Polymerization predicted by computational chemistry. Comput Quant Chem Insights Polym React 21:287–326

    Google Scholar 

  49. Makio H, Terao H, Iwashita A, Fujita T (2011) FI Catalysts for Olefin Polymerization-A Comprehensive Treatment. Chem Rev 111:2363–2449

    CAS  PubMed  Google Scholar 

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian Inc, Wallingford CT

    Google Scholar 

  51. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys Rev A 38:3098–3100

    CAS  Google Scholar 

  52. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824

    CAS  Google Scholar 

  53. Schaefer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577

    CAS  Google Scholar 

  54. Haeusermann U, Dolg M, Stoll H, Preuss H (1993) Accuracy of energy-adjusted quasirelativistic ab initio pseudopotentials. Mol Phys 78:1211–1224

    Google Scholar 

  55. Leininger T, Nicklass A, Stoll H, Dolg M, Schwerdtfeger P (1996) The accuracy of the pseudopotential approximation. II. A comparison of various core sizes for indium pseudopotentials in calculations for spectroscopic constants of InH, InF, and InCl. J Chem Phys 105:1052–1059

    CAS  Google Scholar 

  56. Kuechle W, Dolg M, Stoll H, Preuss H (1994) Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J Chem Phys 100:7535–7542

    CAS  Google Scholar 

  57. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    CAS  Google Scholar 

  58. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001

    CAS  Google Scholar 

  59. Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094

    CAS  Google Scholar 

  60. Kohlmeyer A, Mundy CJ, Mohamed F, Schiffmann F, Tabacchi G, Forbert H, Kuo W, Hutter J, Krack M, Iannuzzi M, McGrath M, Guidon M, Kuehne TD, Laino T, Vande Vondele J, Weber V (2004) CP2K. http://cp2k.berlios.de

  61. VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput Phys Commun 167:103–128

    CAS  Google Scholar 

  62. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys ReV Lett 77:3865–3868

    CAS  PubMed  Google Scholar 

  63. Lippert G, Hutter J, Parrinello M (1997) A hybrid Gaussian and plane wave density functional scheme. Mol Phys 92:477–487

    CAS  Google Scholar 

  64. Krack M, Parrinello M (2004). In: Grotendorst J (ed) High performance computing in chemistry. NIC series, vol 25. Research Centre Jülich, Jülich, pp 29–51

    Google Scholar 

  65. Goedecker S, Teter M, Hutter J (1996) Separable dual-space Gaussian pseudopotentials. Phys ReV B 54:1703–1710

    CAS  Google Scholar 

  66. Krack M (2005) Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation funcionals. Theor Chem Acc 114:145–152

    CAS  Google Scholar 

  67. Poater A, Ragone F, Correa A, Szadkowska A, Barbasiewicz M, Grela K, Cavallo L (2010) Mechanistic insights into the cis–trans isomerization of ruthenium complexes relevant to catalysis of olefin metathesis. Chem Eur J 16:14354–14364

    CAS  PubMed  Google Scholar 

  68. Ragone F, Poater A, Cavallo L (2010) Flexibility of N-heterocyclic carbene ligands in Ru-complexes relevant to olefin metathesis and their impact in the first coordination sphere of the metal. J Am Chem Soc 132:4249–4258

    CAS  PubMed  Google Scholar 

  69. Kruszewski J, Krygowski TM (1972) Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett 13:3839–3842

    Google Scholar 

  70. Matito E, Duran M, Solà M (2005) The aromatic fluctuation index (FLU): a new aromaticity index based on electron delocalization. J Chem Phys 122:014109

    Google Scholar 

  71. Poater J, Fradera X, Duran M, Solà M (2003) The delocalization index as an electronic aromaticity criterion: application to a series of planar polycyclic aromatic hydrocarbons. Chem Eur J 9:400–406

    CAS  PubMed  Google Scholar 

  72. Keith TA (2014) AIMAll (Version 14.11.23), TK Gristmill Software, Overland Park KS, USA

  73. Matito E (2015) ESI-3D: electron sharing indices program for 3D molecular space partitioning; IQCC, University of Girona, Catalonia, Spain and DIPC, Donostia. Euskadi, Spain

  74. Matito E, Solà M, Salvador P, Duran M (2007) Electron sharing indexes at the correlated level. Application to aromaticity calculations. Faraday Discuss 135:325–345

    CAS  PubMed  Google Scholar 

  75. Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Hommes NJRvE (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318

    CAS  PubMed  Google Scholar 

  76. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang WT (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Contreras-Garcia J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang WT (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7:625–632

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Poater J, Gimferrer M, Poater A (2018) Covalent and ionic capacity of MOFs to Sorb small gas molecules. Inorg Chem 57:6981–6990

    CAS  PubMed  Google Scholar 

  79. Hanifpour A, Bahri-Laleh N, Nekoomanesh-Haghighi M, Poater A (2021) 1-Decene oligomerization by new complexes bearing diamine-diphenolates ligands: effect of ligand structure. Appl Organomet Chem. https://doi.org/10.1002/AOC.6227

    Article  Google Scholar 

  80. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter Mater Phys 37:785–789

    CAS  Google Scholar 

  81. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873

    CAS  PubMed  Google Scholar 

  82. Poater A, Gallegos Saliner A, Solà M, Cavallo L, Worth AP (2010) Computational methods to predict the reactivity of nanoparticles through structure–property relationships. Expert Opin Drug Deliv 7:295–305

    CAS  PubMed  Google Scholar 

  83. Falivene L, Credendino R, Poater A, Petta A, Serra L, Oliva R, Scarano V, Cavallo L (2016) SambVca 2. A web tool for analyzing catalytic pockets with topographic steric maps. Organometallics 35:2286–2293

    CAS  Google Scholar 

  84. Falivene L, Cao Z, Petta A, Serra L, Poater A, Oliva R, Scarano V, Cavallo L (2019) Towards the online computer-aided design of catalytic pockets. Nat Chem 11:872–879

    CAS  PubMed  Google Scholar 

  85. Jacobsen H, Correa A, Poater A, Costabile C, Cavallo L (2009) Understanding the M (NHC) (NHC = N-heterocyclic carbene) bond. Coord Chem Rev 253:687–703

    CAS  Google Scholar 

  86. Poater A, Cosenza B, Correa A, Giudice S, Ragone F, Scarano V, Cavallo L (2009) SambVca: a web application for the calculation of buried volumes of N-heterocyclic carbene ligands. Eur J Inorg Chem 21:1759–1766

    Google Scholar 

  87. Kaur S, Kumar V, Chawla M, Cavallo L, Poater A, Upadhyay N (2017) Pesticides curbing soil fertility: effect of complexation of free metal ions. Front Chem 5:43

    PubMed  PubMed Central  Google Scholar 

  88. Luque-Urrutia JA, Poater A (2017) The fundamental non innocent role of water for the hydrogenation of nitrous oxide by PNP pincer Ru-based catalysts. Inorg Chem 56:14383–14387

    CAS  PubMed  Google Scholar 

  89. Al Maksoud W, Saidi A, Samantaray MK, Abou-Hamad E, Poater A, Ould-Chikh S, Guo X, Guan E, Ma T, Gates BC, Basset J-M (2020) Docking of tetra-methyl zirconium to the surface of silica: a well-defined pre-catalyst for conversion of CO2 to cyclic carbonate. Chem Commun 56:3528–3531

    CAS  Google Scholar 

  90. Poater A, Ragone F, Correa A, Cavallo L (2009) Exploring the reactivity of Ru-based metathesis catalysts with a π-acid ligand trans to the Ru-ylidene bond. J Am Chem Soc 131:9000–9006

    CAS  PubMed  Google Scholar 

  91. Feixas F, Matito E, Poater J, Solà M (2008) On the performance of some aromaticity indices: a critical assessment using a test set. J Comput Chem 29:1543–1554

    CAS  PubMed  Google Scholar 

  92. Lattanzi A, De Fusco C, Russo A, Poater A, Cavallo L (2012) Hexafluorobenzene: a powerful solvent for a noncovalent stereoselective organocatalytic Michael addition reaction. Chem Commun 48:1650–1652

    CAS  Google Scholar 

  93. Samojłowicz C, Bieniek M, Pazio A, Makal A, Woźniak K, Poater A, Cavallo L, Wójcik J, Zdanowski K, Grela K (2011) The doping effect of fluorinated aromatic solvent on the rate of ruthenium catalysed olefin metathesis. Chem Eur J 17:12981–12993

    PubMed  Google Scholar 

  94. Poater J, Bofill JM, Alemany P, Solà M (2006) Role of electron density and magnetic couplings on the nucleus-independent chemical shift (NICS) profiles of [2.2]paracyclophane and related species. J Org Chem 71:1700–1702

    CAS  PubMed  Google Scholar 

  95. Poater A, Moradell S, Pinilla E, Poater J, Solà M, Martínez MA, Llobet A (2006) A trinuclear Pt(II) compound with short Pt–Pt–Pt contacts. An analysis of the influence of π–π stacking interactions on the strength and length of the Pt–Pt bond. Dalton Trans 41:1188–1196

    Google Scholar 

  96. Poater A, Ribas X, Llobet A, Cavallo L, Solà M (2008) Complete mechanism of σ* intramolecular aromatic hydroxylation through O2 activation by a macrocyclic dicopper(I) complex. J Am Chem Soc 130:17710–17717

    CAS  PubMed  Google Scholar 

  97. Osuna S, Poater J, Bofill JM, Alemany P, Solà M (2006) Are nucleus-independent (NICS) and 1H NMR chemical shifts good indicators of aromaticity in π-stacked polyfluorenes? Chem Phys Lett 428:191–195

    CAS  Google Scholar 

  98. Costas M, Ribas X, Poater A, López-Valbuena JM, Xifra R, Company A, Duran M, Solà M, Llobet A, Corbella M, Usón MA, Mahía J, Solans X, Shan X, Benet-Buchholz J (2006) Copper(II) hexaaza macrocyclic binuclear complexes obtained from the reaction of their copper(I) derivates and molecular dioxygen. Inorg Chem 45:3569–3581

    CAS  PubMed  Google Scholar 

  99. Richmond CJ, Escayola S, Poater A (2019) Axial ligand effects of Ru-BDA complexes in the O–O bond formation via the I2M bimolecular mechanism in water oxidation catalysis. Eur J Inorg Chem 21:2101–2108

    Google Scholar 

  100. Tabrizi M, Sadjadi S, Pareras G, Nekoomanesh-Haghighi M, Bahri-Laleh N, Poater A (2021) Efficient hydro-finishing of polyalfaolefin based lubricants under mild reaction condition using Pd on ligands decorated halloysite. J Colloid Interface Sci 581:939–953

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.E. acknowledges financial support through IFUG2019 Ph.D. fellowship from Universitat de Girona (UdG) and Donostia International Physics Center (DIPC). A.P. is a Serra Húnter Fellow. A.P. and M.S. thank the Ministerio de Economía y Competitividad (MINECO) of Spain for projects CTQ2014-59832-JIN, PGC2018-097722-B-I00 and CTQ2017-85341-P; Generalitat de Catalunya for project 2017SGR39, Xarxa de Referència en Química Teòrica i Computacional, and ICREA Academia prize 2019 to A.P. N.B.-L. appreciates Iran Polymer and Petrochemical Institute (IPPI) for all of the supports provided under the Grant Number of 43794110. We thank support by Mitsui Chemicals, Inc.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luigi Cavallo, Miquel Solà or Albert Poater.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles “Festschrift in honour of Prof. Ramon Carbó-Dorca”.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6895 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escayola, S., Brotons-Rufes, A., Bahri-Laleh, N. et al. Fluxional bis(phenoxy-imine) Zr and Ti catalysts for polymerization. Theor Chem Acc 140, 49 (2021). https://doi.org/10.1007/s00214-021-02747-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02747-8

Keywords

Navigation