Skip to main content
Log in

Combinatorial enumeration of stereo, chiral and position isomers of polysubstituted halocarbons: applications to machine learning of proton and 35Cl NMR spectroscopy of halocarbons

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Combinatorial enumerations of stereo, chiral and position isomers including meso compounds are considered for polysubstituted halocarbons, persistent environmental pollutants that are the causes of ozone layer depletion and hepatotoxicity in humans. Combinatorial techniques developed are generalizations of Sheehan’s version of Pόlya’s theorem to all irreducible representations of the generalized wreath product groups of the nonrigid halocarbons. The combinatorial chemistry provides a database of these isomers which can then be studied further for toxicity predictions and other properties. We have also applied these techniques for the prediction of NMR and multiple quantum NMR spectral patterns and thus pave the way for machine learning of spectroscopic signatures of halocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Balasubramanian K, Basak SC (2016) Metabolic electron attachment as a primary mechanism for toxicity potentials of halocarbons. Curr Comput Aided Drug Des 12:62–72

    Article  PubMed  CAS  Google Scholar 

  2. Coveney PV, Dougherty ER, Highfield RR (2016) Big data need big theory too. Philosop Transac Royal Soc A: Math Phys Eng Sci 374(2080):20160153

    Article  Google Scholar 

  3. Balasubramanian K (2018) Mathematical and computational techniques for drug discovery: promises and developments. Curr Top Med Chem 18(32):2774–2799

    Article  PubMed  CAS  Google Scholar 

  4. Balasubramanian K (2016) Quantum chemical insights into Alzheimer’s disease: curcumin’s chelation with Cu (II), Zn (II), and Pd (II) as a mechanism for its prevention. Int J Quantum Chem 116(14):1107–1119

    Article  CAS  Google Scholar 

  5. Patil VM, Das S, Balasubramanian K (2016) Quantum chemical and docking insights into bioavailability enhancement of curcumin by piperine in pepper. J Phys Chem A 120(20):3643–3653

    Article  PubMed  CAS  Google Scholar 

  6. Balsubramanian K (1979) A generalized wreath product method for stereo and position isomers of polysubstituted organic compouds. Theor Chim Acta 51:37–54

    Article  Google Scholar 

  7. Carbó-Dorca R (2018) DNA unnatural base pairs and hypercubes. J Math Chem. 56:1353–1536. https://doi.org/10.1007/s10910-018-0866-9

    Article  CAS  Google Scholar 

  8. Carbó-Dorca R, Chakraborty T (2019) Hypercubes defined on n-ary sets, the Erdös–Faber–Lovász conjecture on graph coloring, and the description spaces of polypeptides and RNA. J Math Chem 57:2182–2194

    Article  CAS  Google Scholar 

  9. Balasubramanian K, Gupta SP (2019) Quantum molecular dynamics, topological, group theoretical and graph theoretical studies of protein-protein interactions. Curr Tpc Med Chem 19(6):426–443

    Article  CAS  Google Scholar 

  10. Gregory WL (1996) Carbon tetrachloride toxicity and electron capture. Nature 212:1460–1461

    Article  Google Scholar 

  11. Edwards E (1941) Hepatomas in mice induced with carbon tetrachloride. J Natl Cancer Inst 2:197–199

    CAS  Google Scholar 

  12. Luke BT, Loew GH, McLean AD III (1987) Theoretical investigations of anaerobic reduction of halogenated alkanes by cytochrome P450 structures, inversion barriers and heats of formation of halomethyl radicals. J Am Chem Soc 109:1307–1317

    Article  CAS  Google Scholar 

  13. Woo YT, D.Y. Lai DY, J.C. Arcos JC, M.F. Argus MF, (1985) in: Chemical induction of cancer, vol IIIB. Academic Press, New York, p 71

    Google Scholar 

  14. Costa PJ, Nunes R, Vila-Viçosa D (2019) Halogen bonding in halocarbon-protein complexes and computational tools for rational drug design. Expert Opin Drug Discov 14(8):805–820

    Article  PubMed  CAS  Google Scholar 

  15. Nastainczyk W, Uldrich V, Seis H (1978) Effect of oxygen concentration on the reaction of halomethane with cytochrome P450 in liver microsomes and isolated perfused rat liver Biochem. Pharmacol 27:387–392

    CAS  Google Scholar 

  16. Illenberger E, Momigny J (1994) Gaseous molecular ions. In: Baumgartel H, Frank EU, Grunbein W (eds) Topics in Physical Chemistry. Springer, New York, pp 286–287

    Google Scholar 

  17. Roszak S, Kaufman JJ, Koski WS et al (1994) Potential energy curves of ground and excited states of tetra halomethanes and the negative Ions. J Chem Phys 101:2978–2985

    Article  CAS  Google Scholar 

  18. Roszak S, Balasubramanian K, Kaufman JJ, Koski WS (1993) Multireference configuration-interaction study of temporary anion states in haloforms. Chem Phys Letters 215:427–432

    Article  CAS  Google Scholar 

  19. Kaufman JJ, Koski WS, Roszak S, Balasubramanian K (1996) Correlation between toxicity and energetics of single carbon halides. Chemical Phys 204:233–237

    Article  CAS  Google Scholar 

  20. Koski WS, Roszak S et al (1997) Potential toxicity of halocarbons. vitrio Tox 10:455–457

    CAS  Google Scholar 

  21. Friedman SL (2000) Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 275:2247–2250

    Article  PubMed  CAS  Google Scholar 

  22. Fuji T, Fuchs BC, Yamada S, Lauwers GY, Kulu Y, Goodwin JM, Lanuti M, Tanabe KK (2010) Mouse model of carbon tetrachloride induced liver fibrosis: Histopathological changes and expression of CD133 and epidermal growth factor. BMC Gastroenterology 10:79 http://www.biomedcentral.com/1471-230X/10/79.

  23. Manibusan MK, Odin M, Eastmond DA (2007) Postulated carbon tetrachloride mode of action: a review. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 25:185–209

    Article  PubMed  CAS  Google Scholar 

  24. Modelli A, Scagnolari F, Distefano G, Jones D, Guerra M (1992) Electron attachment to the fluoro-, bromo-, and iodomethanes studied by means of electron transmission spectroscopy and Xα calculations. J Chem Phys 96:2061–2070

    Article  CAS  Google Scholar 

  25. Basak SC, Gute BD, Grunwald GD (1998). In: Chen F, Schuurmann G (eds) Quantitative structure- activity relationships in environmental sciences VII. SETAC Press, Pensacola, FL, pp 245–261

    Google Scholar 

  26. Basak SC, Gute GGD, BD, Balasubramanian K, Opitz D, (2000) Use of statistical and neural net approaches in predicting toxicity of chemicals. J Chem Inf Comput Sci 40:885–890

    Article  PubMed  CAS  Google Scholar 

  27. Roszak S, Koski WS, Kaufman JJ, Balasubramanian K (2001) Structures and electron attachment properties of halomethanes (CXnYm, X)H, F, Y)Cl, Br, I, N)0,4; M)4-N). SAR QSAR Environ Res 11:383–396

    Article  PubMed  CAS  Google Scholar 

  28. Crebelli R, Andreoli C, Carere A, Conti L, Crochi B, CottaRamusino M, Benigni R (1995) Toxicology of halogenated aliphatic hydrocarbons: structural and molecular determinants for the disturbance of chromosome segregation and the induction of lipid peroxidation. Chem-Biol Interact 98:113–129

    Article  PubMed  CAS  Google Scholar 

  29. Crebelli R, Andreoli C, Carere A, Conti L, Crochi B, CottaRamusino M, Benigni R (1992) The induction of mitotic chromosome malsegregation in aspergillus nidulans. quantitative structure activity relationship (QSAR) analysis with chlorinated aliphatic hydrocarbons. Mutat Res 266:117–134

    Article  PubMed  CAS  Google Scholar 

  30. Weber LW, Boll M, Stampfl A (2003) Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol 33:105–136

    Article  PubMed  CAS  Google Scholar 

  31. Fang C, Behr M, Xie F, Lu S, Doret M, Luo H, Yang W, Aldous K, Ding X, Gu J (2008) Mechanism of chloroform-induced renal toxicity: non-involvement of hepatic cytochrome P450-dependent metabolism. Toxicol Appl Pharmacol 227:48–55

    Article  PubMed  CAS  Google Scholar 

  32. Liu S, Yao Y, Lu S, Aldous K, Ding X, Mei C, Gu J (2013) The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: utility of renal specific P450 reductase knockout mouse models. J Toxicol Appl Pharmacol. 272:230–237

    Article  CAS  Google Scholar 

  33. Basak SC, Balasubramanian K, Gute BD, Mills D, Gorczynska A, Roszak S (2003) Prediction of cellular toxicity of halocarbons from computed chemodescriptors: a hierarchical qsar approach. J Chem Inf Comput Sci 43:1103–1109

    Article  PubMed  CAS  Google Scholar 

  34. Denk MK, Milutinović NS, Dereviankin MY (2019) Reduction of halocarbons to hydrocarbons by NADH models and NADH. Chemosphere 233:890–895

    Article  PubMed  CAS  Google Scholar 

  35. Keng FS, Phang SM, Abd Rahman N, Elvidge EC, Malin G, Sturges WT (2020) The emission of volatile halocarbons by seaweeds and their response towards environmental changes. J Appl Phycol. https://doi.org/10.1007/s10811-019-02026-x

    Article  Google Scholar 

  36. Goldman M, Huang Y (2018) Conformational analysis of 1, 2-dichloroethane adsorbed in metal-organic frameworks. Vib Spectrosc 95:68–74

    Article  CAS  Google Scholar 

  37. Balasubramanian K (2020) Computational and artificial intelligence techniques for drug discovery and administration. Comprehensive Pharmacology, Elsevier Amsterdam

    Google Scholar 

  38. Trohalaki S, Pachter R (2003) Quantum descriptors for predictive toxicology of halogenated aliphatic hydrocarbons. SAR QSAR Environ Res 14(2):131–143

    Article  PubMed  CAS  Google Scholar 

  39. Mezey PG (2014) Fuzzy electron density fragments in macromolecular quantum chemistry, combinatorial quantum chemistry, functional group analysis, and shape – activity relations. Accounts of Chem Research 47:2821–2827

    Article  CAS  Google Scholar 

  40. Mezey PG (2012) Natural molecular fragments, functional groups, and holographic constraints on electron densities. Phys Chem Chem Phys 14:8516–8522

    Article  PubMed  CAS  Google Scholar 

  41. Sheehan J (1967) On Pόlya’s Theorem. Can J Math 19:792–799

    Article  Google Scholar 

  42. Rains EM, Sloane NJ (1999). On Cayley's enumeration of alkanes (or 4-valent trees). Journal of Integer Sequences, 2:99.1.1.

  43. Prabhakar YS, Balasubramanian K (2006) A simple algorithm for unique representation of chemical structures cyclic/acyclic functionalized achiral molecules. J Chem Inf Model 46(1):52–56

    Article  PubMed  CAS  Google Scholar 

  44. Benavides-Garcia M, Balasubramanian K (1994) Bond energies, ionization potentials, and the singlet–triplet energy separations of SnCl2, SnBr2, SnI2, PbCl2, PbBr2, PbI2, and their positive ions. J Chem Phys 100(4):2821–2830

    Article  CAS  Google Scholar 

  45. Majumdar D, Balasubramanian K, Nitsche H (2002) A comparative theoretical study of bonding in UO2++, UO2+, UO2, UO2, OUCO, O2U(CO)2 and UO2CO3. Chem Phys Lett 361(1–2):143–151

    Article  CAS  Google Scholar 

  46. Balasubramanian K (1989) Ten low-lying electronic states of Pd3. J Chem Phys 91(1):307–313

    Article  CAS  Google Scholar 

  47. Balasubramanian K, Liao DW (1991) Spectroscopic constants and potential energy curves of Bi2 and Bi2-. J Chem Phys 95:3064–3073

    Article  CAS  Google Scholar 

  48. Balasubramanian K, Sumathi K, Dai D (1991) Group V trimers and their positive ions: the electronic structure and potential energy surfaces. J Chem Phys 95:3494–3505

    Article  CAS  Google Scholar 

  49. Roszak S, Vijayakumar M, Balasubramanian K, Koski WS (1993) A multireference configuration interaction study of photoelectron spectra of carbon tetrahalides. Chem Phys Lett 208:225–231

    Article  CAS  Google Scholar 

  50. Balasubramanian K, Kaufman JJ, Hariharan PC, Koski WS (1986) Energy transfer in Br+-Kr collisions. Chem Phys Lett 129(2):165–171

    Article  CAS  Google Scholar 

  51. Balasubramanian K (1997) Relativistic effects in chemistry. Part A: theory & techniques. Wiley-Interscience, NY, p 301.

    Google Scholar 

  52. Balasubramanian K (1990) Electronic structure of (GaAs)2. Chem Phys Lett 171:58–62

    Article  CAS  Google Scholar 

  53. Balasubramanian K (1997) Relativisitc effects in chemistry. Part B: appplications. Wiley Interscience, New York, p 527

    Google Scholar 

  54. Balasubramanian K (2002) Electronic states of the superheavy element 113 and (113)H. Chem Phys Lett 361(5–6):397–404

    Article  CAS  Google Scholar 

  55. Latifzadeh L, Balasubramanian K (1995) Electronic states of ASF2 and AsF +2 . Chem Phys Lett 237(3–4):222–228

  56. Balasubramanian K (2009) Group theoretical treatment of Jahn-Teller versus spin-orbit effects on geometries, rovibronic levels and nuclear spin species of bismuth and antimony clusters. Mol Phys 107(8–12):797–807

    Article  CAS  Google Scholar 

  57. Balasubramanian K (1988) Graph edge colorings and their chemical applications. Theoretica Chimica Acta 74(2):111–122

    Article  Google Scholar 

  58. Balasubramanian K, Ori O, Cataldo F, Ashrafi AR, Putz MV (2021) Face colorings and chiral face colorings of icosahedral giant fullerenes: C80 to C240. Fuller Nanotub Carbon Nanostr 29(1):1–12

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnan Balasubramanian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles "Festschrift in honour of Prof. Ramon Carbó-Dorca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balasubramanian, K. Combinatorial enumeration of stereo, chiral and position isomers of polysubstituted halocarbons: applications to machine learning of proton and 35Cl NMR spectroscopy of halocarbons. Theor Chem Acc 140, 58 (2021). https://doi.org/10.1007/s00214-021-02744-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02744-x

Keywords

Navigation