Skip to main content

Advertisement

Log in

The energy components of the extended transition state energy decomposition analysis are path functions: the case of water tetramer

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A recent paper (Phys. Chem. Chem. Phys. 2020, 22:22,459) shows that the energy components of the extended transition state energy decomposition analysis (ETS-EDA) are path functions, and therefore, they are not uniquely defined. In this work, we apply the ETS-EDA to analyse all possible dissociation paths of the water tetramer to four free water molecules. Our results confirm that the energy components of the ETS-EDA are path functions. However, they also show that differences among energy components obtained for the different paths are relatively small, and therefore, we conclude that the information obtained from an ETS-EDA can be used to discuss the nature of chemical bonds and analyse the origin of isomerization energies and energy barriers. However, if a given process can be attained by means of different and chemically reasonable paths, we recommend to perform the ETS-EDA of a given reaction for all different paths to confirm that energy components of the ETS-EDA do not differ very much from one path to another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

5. References

  1. Vaughan AL (1931) Mass spectrograph analyses, and critical potentials for the production of ions by electron impact, in nitrogen and carbon monoxide. Phys Rev 38:1687–1695

    Article  CAS  Google Scholar 

  2. Mathur D (2004) Structure and dynamics of molecules in high charge states. Phys Rep 391:1–118

    Article  CAS  Google Scholar 

  3. Fletcher JD, Parkes MA, Price SD (2015) Bond-forming reactions of N22+ with C2H4, C2H6, C3H4 and C3H6. Int J Mass Spectrom 377:101–108

    Article  CAS  Google Scholar 

  4. Phipps MJS, Fox T, Tautermann CS, Skylaris C-K (2015) Energy decomposition analysis approaches and their evaluation on prototypical protein–drug interaction patterns. Chem Soc Rev 44:3177–3211

    Article  CAS  PubMed  Google Scholar 

  5. Szalewicz K, Jeziorski B (1979) Symmetry-adapted double-perturbation analysis of intramolecular correlation effects in weak intermolecular interactions. Mol Phys 38:191–208

    Article  CAS  Google Scholar 

  6. Jeziorski B, Moszynski R, Szalewicz K (1994) Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem Rev 94:1887–1930

    Article  CAS  Google Scholar 

  7. Kitaura K, Morokuma K (1976) A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation. Int J Quantum Chem 10:325–340

    Article  CAS  Google Scholar 

  8. Morokuma K (1977) Why do molecules interact? The origin of electron donor-acceptor complexes, hydrogen bonding and proton affinity. Acc Chem Res 10:294–300

    Article  CAS  Google Scholar 

  9. Ziegler T, Rauk A (1977) On the calculation of bonding energies by the Hartree Fock slater method. Theor Chim Acta 46:1–10

    Article  CAS  Google Scholar 

  10. Ziegler T, Rauk A (1979) A theoretical study of the ethylene-metal bond in complexes between copper(1+), silver(1+), gold(1+), platinum(0) or platinum(2+) and ethylene, based on the Hartree-Fock-Slater transition-state method. Inorg Chem 18:1558–1565

    Article  CAS  Google Scholar 

  11. Bickelhaupt FM, Baerends EJ. Rev. Comput. Chem. In: Lipkowitz KB, Boyd DB, eds. Vol. 15. New York: Wiley-VCH; 2000, 1–86.

  12. Frenking G, Bickelhaupt FM (2014) The EDA perspective of chemical bonding. In: Frenking G, Shaik S (eds) The chemical bond. Wiley, Weinheim, pp 121–157

    Chapter  Google Scholar 

  13. Bickelhaupt FM, Houk KN (2017) Analyzing reaction rates with the distortion/interaction-activation strain model. Angew Chem Int Ed 56:10070–10086

    Article  CAS  Google Scholar 

  14. Fernández I (2018) Understanding the reactivity of fullerenes through the activation strain model. Eur J Org Chem 2018:1394–1402

    Article  Google Scholar 

  15. Zhao L, von Hopffgarten M, Andrada DM, Frenking G (2018) Energy decomposition analysis. WIREs Comput Mol Sci 8:e1345

    Article  Google Scholar 

  16. Andrés J, Ayers PW, Boto RA, Carbó-Dorca R, Chermette H, Cioslowski J, Contreras-García J, Cooper DL, Frenking G, Gatti C et al (2019) Nine questions on energy decomposition analysis. J Comput Chem 40:2248–2283

    Article  PubMed  Google Scholar 

  17. Andrada DM, Foroutan-Nejad C (2020) Energy components in energy decomposition analysis (EDA) are path functions; why does it matter? Phys Chem Chem Phys 22:22459–22464

    Article  CAS  PubMed  Google Scholar 

  18. Pérez JF, Hadad CZ, Restrepo A (2008) Structural studies of the water tetramer. Int J Quantum Chem 108:1653–1659

    Article  Google Scholar 

  19. Vítek A, Kalus R, Paidarová I (2010) Structural changes in the water tetramer. A combined Monte Carlo and DFT study. Phys Chem Chem Phys 12:13657–13666

    Article  PubMed  Google Scholar 

  20. Ceponkus J, Uvdal P, Nelander B (2012) Water tetramer, pentamer, and hexamer in inert matrices. J Phys Chem A 116:4842–4850

    Article  CAS  PubMed  Google Scholar 

  21. Cruzan JD, Braly LB, Liu K, Brown MG, Loeser JG, Saykally RJ (1996) Quantifying hydrogen bond cooperativity in water: VRT spectroscopy of the water tetramer. Science 271:59–62

    Article  CAS  PubMed  Google Scholar 

  22. Baerends EJ, Autschbach J, Bérces A, Bickelhaupt FM, Bo C, de Boeij PL, Boerrigter PM, Cavallo L, Chong DP, Deng L et al (2017) ADF2017.01, SCM, Vrje Universiteit Amsterdam, Amsterdam, The Netherlands. http://www.scm.com

  23. te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967

    Article  Google Scholar 

  24. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  25. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  26. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  27. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  PubMed  Google Scholar 

  28. Becke AD, Johnson ER (2007) Exchange-hole dipole moment and the dispersion interaction revisited. J Chem Phys 127:154108

    Article  PubMed  Google Scholar 

  29. Van Lenthe E, Baerends EJ (2003) Optimized slater-type basis sets for the elements 1–118. J Comput Chem 24:1142–1156

    Article  PubMed  Google Scholar 

  30. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  31. Solà M, Lledós A, Duran M, Bertrán J, Ventura ON (1990) Ab initio study of substituent effect on the addition of hydrogen fluoride to fluoroethylenes. J Comput Chem 11:170–180

    Article  Google Scholar 

  32. Glendening ED, Streitwieser A (1994) Natural energy decomposition analysis: an energy partitioning procedure for molecular interactions with application to weak hydrogen bonding, strong ionic, and moderate donor–acceptor interactions. J Chem Phys 100:2900–2909

    Article  CAS  Google Scholar 

  33. Poater J, Fradera X, Solà M, Duran M, Simon S (2003) On the electron-pair nature of the hydrogen bond in the framework of the atoms in molecules theory. Chem Phys Lett 369:248–255

    Article  CAS  Google Scholar 

  34. Song H-J, Xiao H-M, Dong H-S (2006) Cooperative effects, strengths of hydrogen bonds, and intermolecular interactions in circular cis, trans-cyclotriazane clusters (n = 3–8). J Chem Phys 125:074308

    Article  PubMed  Google Scholar 

  35. Guevara-Vela JM, Chávez-Calvillo R, García-Revilla M, Hernández-Trujillo J, Christiansen O, Francisco E, Martín Pendás Á, Rocha-Rinza T (2013) Hydrogen-bond cooperative effects in small cyclic water clusters as revealed by the interacting quantum atoms approach. Chem Eur J 19:14304–14315

    Article  CAS  PubMed  Google Scholar 

  36. Fonseca Guerra C, Zijlstra H, Paragi G, Bickelhaupt FM (2011) Telomere structure and stability: covalency in hydrogen bonds, not resonance assistance, causes cooperativity in guanine quartets. Chem Eur J 17:12612–12622

    Article  CAS  PubMed  Google Scholar 

  37. Nochebuena J, Cuautli C, Ireta J (2017) Origin of cooperativity in hydrogen bonding. Phys Chem Chem Phys 19:15256–15263

    Article  CAS  PubMed  Google Scholar 

  38. Wolters LP, Smits NWG, Guerra CF (2015) Covalency in resonance-assisted halogen bonds demonstrated with cooperativity in N-halo-guanine quartets. Phys Chem Chem Phys 17:1585–1592

    Article  CAS  PubMed  Google Scholar 

  39. Paragi G, Fonseca GC (2017) Cooperativity in the self-assembly of the guanine nucleobase into quartet and ribbon structures on surfaces. Chem Eur J 23:3042–3050

    Article  CAS  PubMed  Google Scholar 

  40. Bergmann ED (1971) Aromaticity, pseudo-aromaticity and anti-aromaticity. In: Bergmann ED, Pullman B (eds) Proceedings of the international symposium, Jerusalem, 1970. The Israel Academy of Science and Humanities, Jerusalem, p 392

  41. El-Hamdi M, Tiznado W, Poater J, Solà M (2011) An analysis of the isomerization energies of 1,2-/1,3-Diazacyclobutadiene, Pyrazole/Imidazole, and Pyridazine/Pyrimidine with the turn-upside-down approach. J Org Chem 76:8913–8921

    Article  CAS  PubMed  Google Scholar 

  42. El Bakouri O, Solà M, Poater J (2016) Planar versus three-dimensional X62−, X2Y42−, and X3Y32− (X, Y = B, Al, Ga) metal clusters: an analysis of their relative energies through the turn-upside-down approach. Phys Chem Chem Phys 18:21102–21110; Erratum, íbid (2018) 20:3845–3846

    Article  CAS  PubMed  Google Scholar 

  43. Wolters LP, Bickelhaupt FM (2015) The activation strain model and molecular orbital theory. WIREs Comput Mol Sci 5:324–343

    Article  CAS  Google Scholar 

  44. Fernández I, Bickelhaupt FM (2014) The activation strain model and molecular orbital theory: understanding and designing chemical reactions. Chem Soc Rev 43:4953–4967

    Article  PubMed  Google Scholar 

  45. Vermeeren P, van der Lubbe SCC, Fonseca Guerra C, Bickelhaupt FM, Hamlin TA (2020) Understanding chemical reactivity using the activation strain model. Nat Protoc 15:649–667

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Ministerio de Economía y Competitividad (MINECO) of Spain (Projects CTQ2017-85341-P, PID2019-106830GB-I00, and MDM-2017-0767) and the Generalitat de Catalunya (projects 2017SGR39 and 2017SGR348). Excellent service by the Supercomputer center of the Consorci de Serveis Universitaris de Catalunya (CSUC) is gratefully acknowledged. This work is dedicated to Prof. Ramon Carbó-Dorca as a proof of our admiration for his brilliant contributions to chemistry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miquel Solà or Jordi Poater.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles "Festschrift in honour of Prof. Ramon Carbó-Dorca".

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solà, M., Duran, M. & Poater, J. The energy components of the extended transition state energy decomposition analysis are path functions: the case of water tetramer. Theor Chem Acc 140, 33 (2021). https://doi.org/10.1007/s00214-021-02730-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02730-3

Keywords

Navigation