Skip to main content
Log in

Determination of stable structure of a cluster using convolutional neural network and particle swarm optimization

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Minimization of the energy of a molecule is an important research problem in quantum chemistry. The use of appropriate global optimization algorithms for determining the most stable configuration is a matter of active interest, and various efforts have been made toward achieving the same. Instead of using single method-based techniques, a recent method has been developed for constructing new models where particle swarm optimization can be made use of. In the present study, we propose a convolutional neural network (CNN) model for learning and predicting the energy of a system by training geometries of cluster units containing both metal and non-metal atoms, viz. C5, N42−, N64−, Aun (n = 2 − 8) and AunAgm (2 ≤ n + m ≤ 8) clusters as prototype examples. Initially, several random clusters are generated within a given range in the three-dimensional space and their energies determined using the atom-centered density matrix propagation molecular dynamics simulation (ADMP). A CNN model is constructed from this initial set of clusters, which is later used for generating a huge number of systems required while searching for the stable structure, instead of using time-consuming quantum mechanical calculations in an iterative process. While several global optimization algorithms could have been used, we choose to employ particle swarm optimization (PSO) due to its ease of implementation and efficient rate of convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Peng Y, Zhang X (2007) Integrative data mining in systems biology: from text to network mining. Artif Intell Med 41:83–86

    PubMed  Google Scholar 

  2. Zhang NL, Zhang W (2001) Speeding up the convergence of value iteration in partially observable Markov decision processes. J Artif Intell Res 14:29–51

    Google Scholar 

  3. Zhou X, Liu B, Wu Z, Feng Y (2007) Integrative mining of traditional Chinese medicine literature and MEDLINE for functional gene networks. Artif Intell Med 41:87–104

    PubMed  Google Scholar 

  4. Wang S, Wang Y, Du W, Sun F, Wang X, Zhou C, Liang Y (2007) A multi-approaches-guided genetic algorithm with application to operon prediction. Artif Intell Med 41:151–159

    PubMed  Google Scholar 

  5. Artrith N, Urban A (2016) An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2. Comp Mater Sci 114:135–150

    CAS  Google Scholar 

  6. Schütt KT, Sauceda HE, Kindermans PJ, Tkatchenko A, Müller KR (2018) SchNet–A deep learning architecture for molecules and materials. J Chem Phys 148:241722

    PubMed  Google Scholar 

  7. Behler J, Parrinello M (2007) Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett 98:146401

    PubMed  Google Scholar 

  8. Hellström M, Behler J (2017) Structure of aqueous NaOH solutions: insights from neural-network-based molecular dynamics simulations. Phys Chem Chem Phys 19:82–96

    Google Scholar 

  9. Smith JS, Isayev O, Roitberg AE (2017) ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem Sci 8:3192–3203

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Deringer VL, Csányi G (2017) Machine learning based interatomic potential for amorphous carbon. Phys Rev B 95:094203

    Google Scholar 

  11. Carleo G, Troyer M (2017) Solving the quantum many-body problem with artificial neural networks. Science 355:602–606

    CAS  PubMed  Google Scholar 

  12. Liang X, Liu WY, Lin PZ, Guo GC, Zhang YS, He L (2018) Solving frustrated quantum many-particle models with convolutional neural networks. Phys Rev B 98:104426

    CAS  Google Scholar 

  13. Ovchinnikov O, Jesse S, Bintacchit P, Trolier-McKinstry S, Kalinin SV (2009) Disorder identification in hysteresis data: recognition analysis of the random-bond–random-field ising model. Phys Rev Lett 103:157203

    CAS  PubMed  Google Scholar 

  14. Arsenault LF, Lopez-Bezanilla A, von Lilienfeld OA, Millis AJ (2014) Machine learning for many-body physics: the case of the Anderson impurity model. Phys Rev B 90:155136

    Google Scholar 

  15. Ch’Ng K, Carrasquilla J, Melko RG, Khatami E (2017) Machine learning phases of strongly correlated fermions. Phys Rev X 7:031038

    Google Scholar 

  16. Bereau T, DiStasio RA Jr, Tkatchenko A, Von Lilienfeld OA (2018) Non-covalent interactions across organic and biological subsets of chemical space: Physics-based potentials parametrized from machine learning. J Chem Phys 148:241706

    PubMed  Google Scholar 

  17. Kusne AG, Gao T, Mehta A, Ke L, Nguyen MC, Ho KM, Antropov V, Wang CZ, Kramer MJ, Long C et al (2014) On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets. Sci Rep 4:6367

    PubMed  PubMed Central  Google Scholar 

  18. Jesse S, Chi M, Belianinov A, Beekman C, Kalinin S, Borisevich A, Lupini A (2016) Big data analytics for scanning transmission electron microscopy ptychography. Sci Rep 6:26348

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Balachandran PV, Xue D, Theiler J, Hogden J, Lookman T (2016) Adaptive strategies for materials design using uncertainties. Sci Rep 6:19660

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wei JN, Duvenaud D, Aspuru-Guzik A (2016) Neural networks for the prediction of organic chemistry reactions. ACS Cent Sci 2:725–732

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel TD, Adams RP, Aspuru-Guzik A (2018) Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 4:268–276

    PubMed  PubMed Central  Google Scholar 

  22. Messina L, Quaglino A, Goryaeva A, Marinica MC, Domain C, Castin N, Bonny G, Krause R (2018) Smart energy models for atomistic simulations using a DFT-driven multifidelity approach. arXiv preprint arXiv:1808.06935

  23. Van Nieuwenburg EP, Liu YH, Huber SD (2017) Learning phase transitions by confusion. Nat Phys 13:435–439

    Google Scholar 

  24. Carrasquilla J, Melko RG (2017) Machine learning phases of matter. Nat Phys 13:431–434

    CAS  Google Scholar 

  25. Jadrich R, Lindquist B, Truskett T (2018) Unsupervised machine learning for detection of phase transitions in off-lattice systems. I Foundations J Chem Phys 149:194109

    CAS  PubMed  Google Scholar 

  26. Zhao XL, Fu LB (2018) Machine Learning Phase Transition: An Iterative Proposal arXiv:1410.3831

  27. Kim D, Kim DH (2018) Smallest neural network to learn the Ising criticality. Phys Rev E 98:022138

    CAS  PubMed  Google Scholar 

  28. Ortega-Zamorano F, Jerez JM, Juárez GE, Franco L (2017) FPGA implementation of neurocomputational models: comparison between standard back-propagation and C-Mantec constructive algorithm. Neural Process Lett 46:899–914

    Google Scholar 

  29. Filletti ÉR, Da Silva JM, Ferreira VG (2015) Predicting of the fibrous filters efficiency for the removal particles from gas stream by artificial neural network. Adv Chem Engineer Sci 5:317

    CAS  Google Scholar 

  30. Ramil A, López A, Pozo-Antonio J, Rivas T (2018) A computer vision system for identification of granite-forming minerals based on RGB data and artificial neural networks. Measurement 117:90–95

    Google Scholar 

  31. Walczak S, Velanovich V (2018) Improving prognosis and reducing decision regret for pancreatic cancer treatment using artificial neural networks. Decis Support Syst 106:110–118

    Google Scholar 

  32. Balabin RM, Lomakina EI (2009) Neural network approach to quantum-chemistry data: Accurate prediction of density functional theory energies. J Chem Phys 131:074104

    PubMed  Google Scholar 

  33. Brockherde F, Vogt L, Li L, Tuckerman ME, Burke K, Müller KR (2017) Bypassing the Kohn-Sham equations with machine learning. Nat Commun 8:1–10

    CAS  Google Scholar 

  34. McGibbon RT, Pande VS (2013) Learning kinetic distance metrics for Markov state models of protein conformational dynamics. J Chem Theory Comput 9:2900–2906

    CAS  PubMed  Google Scholar 

  35. Fletcher TL, Davie SJ, Popelier PL (2014) Prediction of intramolecular polarization of aromatic amino acids using kriging machine learning. J Chem Theory Comput 10:3708–3719

    CAS  PubMed  Google Scholar 

  36. Izeboudjen N, Larbes C, Farah A (2014) A new classification approach for neural networks hardware: from standards chips to embedded systems on chip. Artif Intell Rev 41:491–534

    Google Scholar 

  37. Mozaffari A, Emami M, Fathi A (2019) A comprehensive investigation into the performance, robustness, scalability and convergence of chaos-enhanced evolutionary algorithms with boundary constraints. Artif Intell Rev 52:2319–2380

    Google Scholar 

  38. Wang D, He H, Liu D (2017) Intelligent optimal control with critic learning for a nonlinear overhead crane system. IEEE T Ind Inform 14:2932–2940

    Google Scholar 

  39. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: Convolutional architecture for fast feature embedding, Proceedings of the 22nd ACM international conference on Multimedia 10: 675–678

  40. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529:484

    CAS  Google Scholar 

  41. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G (2015) Human-level control through deep reinforcement learning. Nature 518:529–533

    CAS  PubMed  Google Scholar 

  42. Yao K, Parkhill J (2016) Kinetic energy of hydrocarbons as a function of electron density and convolutional neural networks. J Chem Theory Comput 12:1139–1147

    CAS  PubMed  Google Scholar 

  43. Mills K, Tamblyn I (2018) Deep neural networks for direct featureless learning through observation: the case of two-dimensional spin models. Phys Rev E 97:032119

    CAS  PubMed  Google Scholar 

  44. Mills K, Kevin R, Iryna L, Adam D, Chris B, Isaac T (2019) Extensive deep neural networks for transferring small scale learning to large scale systems. Chem Sci 10:4129–4140

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bunker DL (1971) Classical Trajectory Methods. Meth Comput Phys 10:287–325

    CAS  Google Scholar 

  46. Portman N, Tamblyn I (2017) Sampling algorithms for validation of supervised learning models for Ising-like systems. J Comput Phys 350:871–890

    Google Scholar 

  47. Ryczko K, Mills K, Luchak I, Homenick C, Tamblyn I (2018) Convolutional neural networks for atomistic systems. Comput Mater Sci 149:134–142

    CAS  Google Scholar 

  48. Yañez O, Vásquez-Espinal A, Inostroza D, Ruiz L, Pino-Rios R, Tiznado W (2017) A Fukui function-guided genetic algorithm. assessment on structural prediction of Sin (n=12–20) clusters. J Comput Chem 38:1668–1677

    PubMed  Google Scholar 

  49. Yañez O, Báez-Grez R, Inostroza D, Rabanal-León WA, Pino-Rios R, Garza J, Tiznado W (2019) AUTOMATON: a program that combines a probabilistic cellular automata and a genetic algorithm for global minimum search of clusters and molecules. J Chem Theory Comput 15:1463–1475

    PubMed  Google Scholar 

  50. Samanta B, De A, Jana G, Chattaraj PK, Ganguly N, Rodriguez MG (2020) NeVAE: a deep generative model for molecular graphs. J Mach Learn Res 21:1–33

    Google Scholar 

  51. Weltner W Jr, Van Zee RJ (1989) Carbon molecules, ions, and clusters. Chem Rev 89:1713–1747

    CAS  Google Scholar 

  52. Bernath PF, Hinkle KH, Keady JJ (1989) Detection of C5 in the Circumstellar Shell of IRC+ 10216. Science 244:562–564

    CAS  PubMed  Google Scholar 

  53. Douglas AE (1951) Laboratory studies of the lambda 4050 group of cometary spectra. Astrophys J 114:466

    CAS  Google Scholar 

  54. Bettens R, Herbst E (1997) The formation of large hydrocarbons and carbon clusters in dense interstellar clouds. Astrophys J 478:585

    CAS  Google Scholar 

  55. Fulara J, Lessen D, Freivogel P, Maier J (1993) Laboratory evidence for highly unsaturated hydrocarbons as carriers of some of the diffuse interstellar bands. Nature 366:439–441

    CAS  Google Scholar 

  56. Kroto H, McKay K (1988) The formation of quasi-icosahedral spiral shell carbon particles. Nature 331:328–331

    CAS  Google Scholar 

  57. Koinuma H, Horiuchi T, Inomata K, Ha HK, Nakajima K, Chaudhary K (1996) Synthesis of carbon clusters and thin films by low temperature plasma chemical vapor deposition under atmospheric pressure. Pure Appl Chem 68:1151–1154

    CAS  Google Scholar 

  58. Van Orden A, Saykally RJ (1998) Small carbon clusters: spectroscopy, structure, and energetics. Chem Rev 98:2313–2358

    PubMed  Google Scholar 

  59. Martin J, François JP, Gijbels R (1993) The impact of quantum chemical methods on the interpretation of molecular spectra of carbon clusters. J Mol Struct 294:21–24

    CAS  Google Scholar 

  60. Hutter J, Luethi HP, Diederich F (1994) Structures and vibrational frequencies of the carbon molecules C2–C18 calculated by density functional theory. J Am Chem Soc 116:750–756

    CAS  Google Scholar 

  61. Hutter J, Lüthi HP (1994) The molecular structure of C6: a theoretical investigation. J chem phys 101:2213–2216

    Google Scholar 

  62. Pitzer KS, Clementi E (1959) Large molecules in carbon vapor. J Am Chem Soc 81:4477–4485

    CAS  Google Scholar 

  63. Straka M (2002) N6 ring as a planar hexagonal ligand in novel M (η6-N6) species. Chem Phys Lett 358:531–536

    CAS  Google Scholar 

  64. Duan HX, Li QS (2006) A series of novel aromatic compounds with a planar N6 ring. Chem Phys Lett 432:331–335

    CAS  Google Scholar 

  65. Duley S, Giri S, Sathyamurthy N, Islas R, Merino G, Chattaraj PK (2011) Aromaticity and hydrogen storage capability of planar N64-and N42-rings. Chem Phys Lett 506:315–320

    CAS  Google Scholar 

  66. Abbasbandy S (2003) Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method. Appl Math Comput 145:887–893

    Google Scholar 

  67. Potra F, Shi Y (1995) Efficient line search algorithm for unconstrained optimization. J Optimiz Theory App 85:677–704

    Google Scholar 

  68. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Google Scholar 

  69. Goldfeld SM, Quandt RE, Trotter HF (1966) Maximization by quadratic hill-climbing. Econometrica J Econometric Soc. https://doi.org/10.2307/1909768

    Article  Google Scholar 

  70. Sammut C, Webb GI (2011) Encyclopedia of machine learning. Springer, Boston

    Google Scholar 

  71. Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

    Google Scholar 

  72. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J global opt 39:459–471

    Google Scholar 

  73. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In 2009 World congress on nature and biologically inspired computing (NaBIC) IEEE. Coimbatore,India

  74. Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput 2:78–84

    Google Scholar 

  75. Marichelvam M, Geetha M (2014) Solving tri-objective multistage hybrid flow shop scheduling problems using a discrete firefly algorithm. Int J Intell Eng Inform 2:284–303

    Google Scholar 

  76. Wang H, Wang W, Sun H, Rahnamayan S (2016) Firefly algorithm with random attraction. Int J Bio-Inspired Comput 8:33–41

    Google Scholar 

  77. Fister I, Fister I Jr, Yang XS, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46

    Google Scholar 

  78. Yang XS (2009) Firefly algorithms for multimodal optimization. In International symposium on stochastic algorithms. Springer, Berlin, Heidelberg

  79. Fister I Jr, Perc M, Kamal SM, Fister I (2015) A review of chaos-based firefly algorithms: perspectives and research challenges. Appl Math Comput 252:155–165

    Google Scholar 

  80. Mitikiri P, Jana G, Sural S, Chattaraj PK (2018) A machine learning technique toward generating minimum energy structures of small boron clusters. Int J Quantum Chem 118:e25672

    Google Scholar 

  81. Jana G, Mitra A, Pan S, Sural S, Chattaraj PK (2019) Modified particle swarm optimization algorithms for the generation of stable structures of carbon clusters, Cn (n= 3–6, 10). Front Chem 7:485

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hassan R, Cohanim B, de Weck O, Venter G (2005) A comparison of particle swarm optimization and the genetic algorithm. In Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials Conference, Austin, Texas, USA

  83. Wales DJ, Doye JP (1997) Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J Phys Chem A 101:5111–5116

    CAS  Google Scholar 

  84. Doye JP, Wales DJ, Miller MA (1998) Thermodynamics and the global optimization of Lennard-Jones clusters. J Chem Phys 109:8143–8153

    CAS  Google Scholar 

  85. Berg BA, Neuhaus T (1991) Multicanonical algorithms for first order phase transitions. Phys Lett B 267:249–253

    Google Scholar 

  86. Hase WL (1992) Advances in classical trajectory methods. JAI Press, Stamford

    Google Scholar 

  87. Thompson DL (1998) Encyclopedia of Computational Chemistry, Ed. Schleyer PvR, Allinger NL, Kollman PA, Clark T, Schaefer III HF, Gasteiger J, Schreiner PR, Wiley, Chichester, pp 3056–3073. https://doi.org/10.1002/0470845015.cca021

  88. Iyengar SS, Schlegel HB, Millam JM, Voth GA, Scuseria GE, Frisch MJ (2001) Ab initio molecular dynamics: propagating the density matrix with gaussian orbitals. ii. generalizations based on mass-weighting, idempotency, energy conservation and choice of initial conditions. J Chem Phys 115:10291–10302

    CAS  Google Scholar 

  89. Schlegel HB, Millam JM, Iyengar SS, Voth GA, Daniels AD, Scuseria GE, Frisch MJ (2001) Ab initio molecular dynamics: propagating the density matrix with Gaussian orbitals. J Chem Phys 114:9758–9763

    CAS  Google Scholar 

  90. Schlegel HB, Iyengar SS, Li X, Millam JM, Voth GA, Scuseria GE, Frisch MJ (2002) Ab initio molecular dynamics: propagating the density matrix with Gaussian orbitals. III. comparison with born-oppenheimer dynamics. J Chem Phys 117:8694–8704

    CAS  Google Scholar 

  91. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2013) Gaussian 09 Revision D.01. Gaussian Inc, Wallingford.

  92. Kennedy J, Eberhart R (1995) Particle swarm optimization, In proceedings of the IEEE international conference on neural networks, IEEE Press, Perth, WA, Australia, 4:1942–1948

  93. Mitra A, Jana G, Agrawal P, Sural S, Chattaraj PK (2020) Integrating firefly algorithm with density functional theory for global optimization of Al42− clusters. Theor Chem Acc 139:32

    CAS  Google Scholar 

  94. Becke AD (1992) Density-functional thermochemistry. I. the effect of the exchange-only gradient correction. J Chem Phys 96:2155–2160

    CAS  Google Scholar 

  95. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    CAS  Google Scholar 

  96. McLean A, Chandler G (1980) Contracted Gaussian basis sets for molecular calculations. I. second row atoms, Z= 11–18. J Chem Phys 72:5639–5648

    CAS  Google Scholar 

  97. Krishnan R, Binkley JS, Seeger R, Pople J (1980) A self-consistent molecular orbital methods. xx. a basis set for correlated wave functions. J Chem Phys 72:650–654

    CAS  Google Scholar 

  98. Zhao GF, Zeng Z (2006) Geometrical and electronic structures of AumAgn (2 ≤ m+n ≥ 8). J Chem Phys. 125(1):014303

    CAS  PubMed  Google Scholar 

  99. Ranjan P, Chakraborty T, Kumar A (2017) Computational investigation of cationic, anionic and neutral Ag2AuN (N=1–7) Nanoalloy clusters. Phys Sci Rev. https://doi.org/10.1515/psr-2016-0112

    Article  Google Scholar 

  100. Lee HM, Ge M, Sahu B, Tarakeshwar P, Kim KS (2003) Geometrical and electronic structures of gold, silver, and gold-silver binary clusters: origins of ductility of gold and gold-silver alloy formation. J Phys Chem B 107:9994–10005

    CAS  Google Scholar 

Download references

Acknowledgments

We are happy to dedicate this article to Professor Ramon Carbó-Dorca, a long-time friend of PKC, on his 80th birth anniversary. We would like to thank Professors Gernot Frenking, Miquel Solà and Tanmoy Chakraborty for kindly inviting us to contribute this article to the Special Issue of the Theoretical Chemistry Accounts. PKC thanks the DST, New Delhi for his J. C. Bose National Fellowship. SS thanks CSE for the computational facilities. AM thanks Department of Computer Science and Engineering, IIT Kharagpur for the computational facilities. GJ and RP thank IIT Kharagpur and CSIR, respectively, for their fellowships. PG thanks Department of Chemistry, IIT Kharagpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratim Kumar Chattaraj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this article, financial and/or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles “Festschrift in honour of Prof. Ramon Carbó-Dorca”.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 11743 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, A., Jana, G., Pal, R. et al. Determination of stable structure of a cluster using convolutional neural network and particle swarm optimization. Theor Chem Acc 140, 30 (2021). https://doi.org/10.1007/s00214-021-02726-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02726-z

Keywords

Navigation