Theoretical study of the reaction mechanism between triphenylphosphine with dialkyl acetylenedicarboxylates in the presence of benzotriazole

Abstract

In this research, the mechanism of the reaction between triphenylphosphine R1 and dialkyl acetylenedicarboxylate R2 was investigated in the presence of NH-acid, such as benzotriazole R3 based on the quantum mechanical calculations. Theoretical studies performed for evaluation of the potential energy surfaces of all structures participated in the reaction mechanism. All structures were optimized at the B3LYP/6-311+ + g(d,p) levels. The first step of the reaction was recognized as a rate-determining step in the reaction mechanism. To check the effect of solvent on the potential energy surfaces, condensed phase calculations in dichloroethane were carried out with the polarizable continuum model. To check the effect of the structure of reactant on the potential energy surfaces, the reaction mechanism was examined in the presence of dimethyl acetylenedicarboxylate R2-M and di-tert-butylacetylenedicarboxylate R2-T. Finally, the natural bond orbital method was applied for a better understanding of molecular interaction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Corbridge DEC (2013) Phosphorus: chemistry, biochemistry and technology, 6th edn. CRC Press, NewYork

    Google Scholar 

  2. 2.

    Mathey F (2001) Phosphorus-carbon heterocyclic chemistry. Elsevier Scienc, Amsterdam

    Google Scholar 

  3. 3.

    Hudson HR, Hantley FR (1990) In the chemistry of organophosphorus compounds, primary secondary and tertiary phosphines, polyphosphines and heterocyclic organophosphorus (III) compounds. Wiley, New York

    Google Scholar 

  4. 4.

    Kolodiazhnyi OI (1999) Phosphorus ylides: chemistry and applications in organic synthesis. John Wiley-VCH, New York

    Google Scholar 

  5. 5.

    Zhang K (2017) Superacidity in sulfated metal-organic framework-808. Am Chem Soc 139:12844–12847

    Google Scholar 

  6. 6.

    Habibi-khorassani SM, Ebrahimi A, Maghsoodlou MT, Kazemian MA, Zakarianezhad M (2009) Chemoselective synthesis of stable phosphorus ylides from 6-azauracil and mechanistic investigation of the reaction by UV spectrophotometry. Phosphorus, Sulfur, Silicon Relat Elem 184:2959–2979

  7. 7.

    Karami K, Rahimi M, Zakariazadeh M, Buyukgungor O, Esmaeili SA (2019) A novel silver (I) complex of α-keto phosphorus ylide: synthesis, characterization, crystal structure, biomolecular interaction studies, molecular docking and in vitro cytotoxic evaluation. Mol Struct 1177:430–443

    CAS  Article  Google Scholar 

  8. 8.

    Ghonchepour E, Islami MR, Mostafavi H, Momeni Tikdari A (2018) Three-component reaction for an efficient synthesis of 5-hydroxy-1-phenyl-1H-pyrazoles containing a stable phosphorus ylide moiety. Phosphorus Sulfur Silicon Relat Elem 193:459–463

    CAS  Article  Google Scholar 

  9. 9.

    Fitjer L, Quabeck U (1985) The wittig reaction using potassium-tert-butoxide high yield methylenations of sterically hindered ketones. Synth Commun 15:855–864

    CAS  Article  Google Scholar 

  10. 10.

    Yavari I, Ali-Asgari S, Porshamsian K, Bagheri M (2007) Efficient synthesis of functionalized bis-(4-oxo-1,3-thiazolan-5-ylidene)acetates. Sulfur Chem 28:477–482

    CAS  Article  Google Scholar 

  11. 11.

    Ramazan A, Souldozi A (2005) Dipotassium-hydrogen-phosphate-powder-catalyzed stereoselective C-vinylation of diphenylacetonitril. Phosphorus Sulfur Silicon Relat Elem 180:2801–2804

    Article  Google Scholar 

  12. 12.

    Yavari I, Alizadeh AA (2003) A simple approach to the synthesis of 1,4-bis(arylsulfonyl)tetrahydropyrazine-2,5-diones. Monatsh Chem 134:435–438

    CAS  Article  Google Scholar 

  13. 13.

    Ramazani A, Bodaghi A (2000) One-pot, four-component synthesis of dialkyl [indane-1,3-dione-2-ylidene]alkoxysuccinates. Tetrahedron Lett 41:567–568

    CAS  Article  Google Scholar 

  14. 14.

    Hassanabadi A, Anary-Abbasinejad M, Dehghan A (2009) Three-component reaction of triphenylphosphine, dimethyl acetylenedicarboxylate, and aldehyde benzoylhydrazones: an efficient one-pot synthesis of stable phosphorus ylides. Synth Commun 39:132–138

    CAS  Article  Google Scholar 

  15. 15.

    Habibi-Khorassani SM, Maghsoodlou MT, Ebrahimi A, Kazemian M, Salari S, Nasiri S (2013) 1H NMR kinetic investigation of the equilibrium between the Z- and e-isomers in a stable phosphorus ylide involving 2-mercaptobenzimidazole. Prog React Kinet Mech 38:295–304

    Article  Google Scholar 

  16. 16.

    Yavari I, Adib M, Jahani-Mogaddam F, Sayahi MH (2002) A simple synthesis of stable heterocyclic phosphorus ylides derived from NH-acids. Phosphor Sulfur Silicon Relat Elem 177:545–553

    CAS  Article  Google Scholar 

  17. 17.

    Islami MR, Yavari I, Tikdari AM, Ebrahimi L, Razee S, Bijanzadeh HR (2003) A practical method for synthesis of stable phosphorus ylides in aqueous media. ChemInform 34:24–147

    Google Scholar 

  18. 18.

    Ziyaadini M, Maghsoodlou MT, Hazeri N, Habibi-Khorassani SM (2013) Synthesis of new stable phosphorus ylidesand 1,4-diionic organophosphorus compoundfrom a reaction between hexamethylphosphorous triamide and dimethylacetylenedicarboxylate in the presence ofCH-Acids. Heteroat Chem 24:84–89

    CAS  Article  Google Scholar 

  19. 19.

    Yavari I, Hossain Z, Alizadeh A (2006) Diastereoselective synthesis of meso-bisphosphonates from trialkyl(aryl) phosphites and activated acetylenes in the presence of 4-nitrophenol. Monatsh Chem 137:1083–1088

    CAS  Article  Google Scholar 

  20. 20.

    Maghsoodlou MT, Hazeri N, Habibi-Khorassani SM, Ghulame-Shahzadeh A, Nassiri M (2006) Simple synthesis of stable phosphorus ylides from indole and some of its derivatives. Phosphor Sulfur Silicon Relat Elem 18:913–919

    Article  Google Scholar 

  21. 21.

    Maghsoodlou MT, Heydari R, Habibi-Khorassani SM, Rofouei MK, Nassiri M, Mosaddegh E, Hassankhani A (2006) Chemoselective synthesis of phosphorus ylides through the reaction of 2-mercaptobenzimidazole and 2-hydroxybenzimidazole with triphenylphosphine and acetylenic esters. Sulfur Chem 27:341–346

    CAS  Article  Google Scholar 

  22. 22.

    Habibi-Khorassani SM, Maghsoodlou T, Ebrahimi A, Zakarianejad M, Solution FM (2007) Kinetics and mechanism of the reactions between triphenylphosphine, dialkyl acetylenedicarboxilates and a NH-Acid, pyrazole, by UV spectrophotometry. Chem 36:1117–1127

    CAS  Google Scholar 

  23. 23.

    Habibi-khorassani M, Ebrahimi A, Maghsoodlou MT, Kazemian MA, Zakarianezhad M (2009) Chemoselective synthesis of stable phosphorus ylides from 6-azauracil and mechanistic investigation of the reaction by UV spectrophotometry. Phosphorus Sulfur Silicon Relat Elem 184:2959–2979

    CAS  Article  Google Scholar 

  24. 24.

    Habibi-Khorasani SM, Ebrahimi A, Maghsoodlou MT, Same-Salari S, Nasiri S, Ghasempour H (2011) Dynamic 1H NMR study around the carbon–carbon single bond and partial carbon–carbon double bond in the two particular phosphorus ylides and in an enaminoester. Magn Reson Chem 49(5):213–220

  25. 25.

    Kabiri R, Hazeri N, Habibi-Khorasani SM, Maghsoodlou MT, Ebrahimi A, Saghatforoush L, Marandi G, Razmjoo Z (2008) Synthesis, dynamic 1H NMR and theoretical study of aryl-nitrogen single bond rotational energy barriers in highly functionalized 4H-chromenes. Arkivoc xvii:12–19

  26. 26.

    Maghsoodlou MT, Hazeri N, Habibi-Khorassani SM, Heydari R, Nassiri M, Marandi Gh, Moeeni Z, Niromand U, Eskandari Torbaghan Z (2006) An efficient synthesis of stable phosphorus ylides derived from triphenylphosphine, dialkyl acetylenedicarboxylates, and an NH-Acid. Phosphorus Sulfur Silicon Relat Elem 181:865–877

    CAS  Article  Google Scholar 

  27. 27.

    Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HB, Ortiz JV, Izmaylov AV, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Montgomery JA, Peralta JE, Ogliaro F, Bearpark B, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford, CT

  28. 28.

    Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527

    CAS  Article  Google Scholar 

  29. 29.

    Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154

    CAS  Article  Google Scholar 

  30. 30.

    Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094

    CAS  Article  Google Scholar 

  31. 31.

    Cances E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041

    CAS  Article  Google Scholar 

  32. 32.

    Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255:327–335

    CAS  Article  Google Scholar 

  33. 33.

    Glendening DE, Reed AE, Carpenter JE, Weinhold F (1998) NBO version 3.1. TCI, University of Wisconsin, Madison

  34. 34.

    Biegler-Knig F, Schnbohm J, Bayles D (2001) AIM2000-A program to analyze and visualize atoms in molecules. J Comput Chem 22:545–559

    Article  Google Scholar 

  35. 35.

    Eckart C (1930) The penetration of a potential barrier by electrons. Phys Rev 35:1303–1309

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Zakarianezhad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zakarianezhad, M., Makiabadi, B. & Hosseini, S.S. Theoretical study of the reaction mechanism between triphenylphosphine with dialkyl acetylenedicarboxylates in the presence of benzotriazole. Theor Chem Acc 140, 13 (2021). https://doi.org/10.1007/s00214-020-02714-9

Download citation

Keywords

  • NH-acid
  • Theoretical study
  • Z- and E-rotamers
  • Benzotriazole
  • Triphenylphosphine
  • NBO