Non-planarity in four-membered homo-cyclic compounds A4 (A = O, S, Se, Te, Po) and restoring their planarity: a study of the pseudo-Jahn–Teller effect

Abstract

The bent D2d structures of the four-membered homo-cyclic compounds A4 (A = O, S, Se, Te, Po) were examined computationally to understand the pseudo-Jahn–Teller effect (PJTE). To do this, ab initio geometry optimizations and corresponding frequency calculations (at the MP2/cc-pVQZ-(PP) level of theory) show that all A4 compounds under-consideration are unstable in their planar (D4h) configuration. The ground state and six low-lying non-degenerate and degenerate electronic excited states were computed at the CASSCF (6,7)/cc-pVQZ-(PP) along the bending normal coordinate connecting the D4h and D2d geometries; these represent the adiabatic potential energy surfaces (APESs). Based on the APESs, the coupling between the ground state (1A1g) and the 1B2u excited state is demonstrated to be the reason for the planar structure bends from the high-symmetry D4h geometry into the lower-symmetry D2d stable equilibrium configuration. The solution to the PJTE (1A1g + 1B2u) ⊗ b2u problem is useful to answer the question of “how instability rises in A4 planar configuration?”. Although all A4 compounds in the series are non-planar with D4h symmetry, but geometrical optimizations and frequency calculations show that coordination of two noble gas cations (NG+ = He+, Ne+ and Ar+) above and below the σh plane of the A4 (A = O, S, Se) ring could restore ring planarity in (A4 NG)2+ complexes. The PJTE is also quenched in the A42+ (A = O, S, Se, Te, Po) cation and dication series, and planarity of the rings is also restored, i.e., the high-symmetry D4h structure becomes the equilibrium configuration.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Steudel R, Eckert B (2003) Top Curr Chem 230:1–79 (Steudel R (2003) Top Curr Chem 231:31–98)

  2. 2.

    Steudel R (1982) Top Curr Chem 102:149–176

    Article  CAS  Google Scholar 

  3. 3.

    Picquenard E, Boumedien MS, Corset J (1993) J Mol Struct 293:63–66

    Article  CAS  Google Scholar 

  4. 4.

    Boumedien MS, Corset J, Picquenard E (1999) J Raman Spectrosc 30:463–472

    Article  CAS  Google Scholar 

  5. 5.

    Brabson GD, Mielke Z, Andrews L (1991) J Phys Chem 95:79–86

    Article  CAS  Google Scholar 

  6. 6.

    Hassanzadeh P, Andrews L (1992) J Phys Chem 96:6579–6585

    Article  CAS  Google Scholar 

  7. 7.

    Meyer B, Stroyer-Hansen T, Oommen TV (1972) J Mol Spectrosc 42:335–343

    Article  CAS  Google Scholar 

  8. 8.

    Meyer B, Stroyer-Hansen T (1972) J Phys Chem 76:3968–3969

    Article  CAS  Google Scholar 

  9. 9.

    Weser G, Hensel F, Warren WW, Bunsenges B (1978) J Phys Chem 82:588–593

    Article  CAS  Google Scholar 

  10. 10.

    Krasnopolsky VA (1987) Adv Space Res 7:25–27

    Article  Google Scholar 

  11. 11.

    Berkowitz J, Chupka WA (1964) J Chem Phys 40:287–295

    Article  CAS  Google Scholar 

  12. 12.

    Drowart J, Goldfinger P, Detry D, Rickert H, Keller H (1968) Adv Mass Spectrom 4:499–510

    CAS  Google Scholar 

  13. 13.

    Berkowitz J, Lifshitz C (1968) J Chem Phys 48:4346–4350

    Article  CAS  Google Scholar 

  14. 14.

    Lewis GN (1924) J Am Chem Soc 46:2027–2032

    Article  CAS  Google Scholar 

  15. 15.

    Lundegaard LF, Weck G, McMahon MI, Desgreniers S, Loubeyre P (2006) Nature 443:201–204

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Krossing I (2003) Top Curr Chem 230:135–152

    Article  CAS  Google Scholar 

  17. 17.

    Stephens PJ (1969) Chem Comm 1615:1496–1506

    Article  Google Scholar 

  18. 18.

    Barr J, Gillespie RJ, Kapoor R, Malhotra KC (1968) Can J Chem 46:149–159

    Article  CAS  Google Scholar 

  19. 19.

    Barr J, Gillespie RJ, Kapoor R, Pez GP (1968) J Am Chem Soc 90:6855–6856

    Article  CAS  Google Scholar 

  20. 20.

    Brown ID, Crump DB, Gillespie RJ, Santry DP (1968) Chem Comm 602:853–854

    Google Scholar 

  21. 21.

    Steudel R (2003) Top Curr Chem 231:203–230

    Article  CAS  Google Scholar 

  22. 22.

    Quelch GE, Schaefer HF, Marsden CJ (1990) J Am Chem Soc 112:8719–8733

    Article  CAS  Google Scholar 

  23. 23.

    Wong MW, Steudel R (2003) Chem Phys Lett 379:162–169

    Article  CAS  Google Scholar 

  24. 24.

    Raghavachari K, Rohlfing CM, Binkley JS (1990) J Chem Phys 93:5862–5874

    Article  CAS  Google Scholar 

  25. 25.

    Zakrzcwski VG, von Niessen W (1994) Theor Chim Acta 88:75–83

    Article  Google Scholar 

  26. 26.

    Abboud JLM, Essefar M, Herreros M, Mo O, Molina MT, Notario R, Yanez M (1998) J Phys Chem A 102:7996–8003

    Article  CAS  Google Scholar 

  27. 27.

    Chen MD, Liu ML, Luo HB, Zhang QE, Au CT (2001) J Mol Struct (THEOCHEM) 548:133–141

    Article  CAS  Google Scholar 

  28. 28.

    Millefiori S, Alparone A (2001) J Phys Chem A 105:9489–9497

    Article  CAS  Google Scholar 

  29. 29.

    Seidl ET, Schaefer HF (1988) J Chem Phys 88:7043–7049

    Article  CAS  Google Scholar 

  30. 30.

    Seidl ET, Schaefer HF (1992) J Chem Phys 96:1176–1182

    Article  CAS  Google Scholar 

  31. 31.

    Hernandez-Lamoneda R, Ramirez-Solis A (2000) J Chem Phys 113:4139–4145

    Article  CAS  Google Scholar 

  32. 32.

    Hernandez-Lamoneda R, Ramirez-Solis A (2004) J Chem Phys 120:10084–10088

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Adamantides V, Neisius D, Verhaegen G (1980) Chem Phys 48:215–220

    Article  CAS  Google Scholar 

  34. 34.

    Gadzhiev OB, Ignatov SK, Kulikov MY, Feigin AM, Razuvaev AG, Sennikov PG, Schrems O (2013) J Chem Theo Comput 9:247–262

    Article  CAS  Google Scholar 

  35. 35.

    Bersuker IB (2006) The Jahn-Teller Effect. Cambridge University Press, Cambridge

    Google Scholar 

  36. 36.

    Bersuker IB (2013) Chem Rev 113:1351–1390

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Blancafort L, Bearpark MJ, Robb MA (2006) Mol Phys 104:2007–2010

    Article  CAS  Google Scholar 

  38. 38.

    Kim JH, Lee Z (2014) Appl Microscopy 44:123–132

    Article  Google Scholar 

  39. 39.

    Gromov EV, Trofimov AB, Vitkovskaya NM, Schirmer J, Koppel H (2003) J Chem Phys 119:737–751

    Article  CAS  Google Scholar 

  40. 40.

    Jose D, Datta A (2011) Phys Chem Chem Phys 13:7304–7311

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Ilkhani AR (2015) J Theo Comput Chem 6:1550045

    Article  CAS  Google Scholar 

  42. 42.

    Ilkhani AR, Gorinchoy NN, Bersuker IB (2015) Chem Phys 460:106–110

    Article  CAS  Google Scholar 

  43. 43.

    Liu Y, Bersuker IB, Garcia-Fernandez P, Boggs JE (2012) J Phys Chem A 116:7564–7570

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Ghosh M, Datta A (2018) Bull Mater Sci 41:117

    Article  CAS  Google Scholar 

  45. 45.

    Hermoso W, Ilkhani AR, Bersuker IB (2014) Comput Theo Chem 1049:109–114

    Article  CAS  Google Scholar 

  46. 46.

    Ilkhani AR (2017) Russian J Phys Chem A 91:1743–1751

    Article  CAS  Google Scholar 

  47. 47.

    Liu Y, Bersuker IB, Boggs JE (2013) Chem Phys 417:26–29

    Article  CAS  Google Scholar 

  48. 48.

    Ilkhani AR, Hermoso W, Bersuker IB (2015) Chem Phys 460:75–82

    Article  CAS  Google Scholar 

  49. 49.

    Bhattacharyya K, Surendran A, Chowdhury C, Datta A (2016) Phys Chem Chem Phys 18:31160–31167

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Ilkhani AR, Monajjemi M (2015) Comput Theo Chem 1074:19–25

    Article  CAS  Google Scholar 

  51. 51.

    Ilkhani AR (2017) Quim Nova 40:491–495

    CAS  Google Scholar 

  52. 52.

    Ilkhani AR (2015) J Mol Struc 1098:21–25

    Article  CAS  Google Scholar 

  53. 53.

    Ivanov AS, Bozhenko KV, Boldyrev AI (2012) Inorg Chem 51:8868–8872

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Ilkhani AR, Wang Z (2019) Theo Chem Acc 138:14

    Article  CAS  Google Scholar 

  55. 55.

    Ilkhani AR (2019) J Chem Sci 131:37

    Article  CAS  Google Scholar 

  56. 56.

    Hampel C, Peterson KA, Werner HJ (1992) Chem Phys Lett 190:1–12

    Article  CAS  Google Scholar 

  57. 57.

    Deegan MJ, Knowles PJ (1994) Chem Phys Lett 227:321–326

    Article  CAS  Google Scholar 

  58. 58.

    Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503–506

    Article  CAS  Google Scholar 

  59. 59.

    Wilson AK, Woon DE, Peterson KA, Dunning TH Jr (1999) J Chem Phys 110:7667–7676

    Article  CAS  Google Scholar 

  60. 60.

    Dunning TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  61. 61.

    Woon DE, Dunning TH (1993) J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  62. 62.

    Peterson KA (2003) J Chem Phys 119:11099–11113

    Article  CAS  Google Scholar 

  63. 63.

    Dolg M (1996) Chem Phys Lett 250:75–79

    Article  CAS  Google Scholar 

  64. 64.

    Dolg M (1996) J Chem Phys 104:4061–4067

    Article  CAS  Google Scholar 

  65. 65.

    Werner HJ, Meyer W (1981) J Chem Phys 74:5794–5801

    Article  CAS  Google Scholar 

  66. 66.

    Werner HJ, Meyer W (1980) J Chem Phys 73:2342–2356

    Article  CAS  Google Scholar 

  67. 67.

    Werner HJ, Knowles PJ (1985) J Chem Phys 82:5053–5063

    Article  CAS  Google Scholar 

  68. 68.

    Werner HJ, Knowles PJ, Manby FR, Schutz M (2015) MOLPRO version 2015.1.22, a package of ab initio programs. https://www.molpro.net

Download references

Acknowledgements

This work was financially supported by the Yazd Branch, Islamic Azad University, and it has been enabled in part with support from Westgrid (www.westgrid.ca) and Compute/Calcul Canada (www.computecanada.ca). The author would like to acknowledge Dr. Alex Brown (University of Alberta) for his helpful discussion and the kindly support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Ilkhani.

Ethics declarations

Conflict of interest

The author declares no conflict of interest in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ilkhani, A.R. Non-planarity in four-membered homo-cyclic compounds A4 (A = O, S, Se, Te, Po) and restoring their planarity: a study of the pseudo-Jahn–Teller effect. Theor Chem Acc 139, 99 (2020). https://doi.org/10.1007/s00214-020-02615-x

Download citation

Keywords

  • PJTE
  • Non-planarity in ring
  • Bending
  • Restoring planarity
  • Homo-cyclic ring