Skip to main content
Log in

Effects of Cr doping in δ-MoN: structural, magnetic and spin transport properties

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Structural, magnetic, and spin transport properties of δ-MoN with one Cr atom substituted at different Mo sites (2a and 6c in the International Tables) have been studied by spin-polarized first-principles calculations and nonequilibrium Green’s function method. The Cr dopants located at 2a and 6c sites [corresponding to the configurations of Cr-MoN(2a) and Cr-MoN(6c)] lead to significant spin splitting of the density of states and contribute 2.86 and 2.70 μB magnetic moments, respectively. Detailed analysis reveals that interactions between the Cr dopant and its neighboring Mo atoms play crucial roles in the magnetic properties of Cr-MoN(2a) and Cr-MoN(6c). The Cr substitution induces evident antiferromagnetic polarization to its Mo neighbors, and each Mo atom possesses − 0.02 to − 0.51 μB magnetic moment antiparallel to the magnetic moment of the Cr dopant. Unlike the pure δ-MoN, the spin-up and the spin-down currents of the Cr-doped systems exhibit obvious spin polarization, and the spin-polarized effect is more enhanced when the Cr dopant is located at the 6c site. Under the examined bias range of 0–1.0 V, Cr-MoN(2a) displays no more than 6.5% spin polarization, whereas in Cr-MoN(6c) case, up to 22.8% of the spin polarization is attained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tagliazucca V, Leoni M, Weidenthaler C (2014) Phys Chem Chem Phys 16:6182

    Article  CAS  Google Scholar 

  2. Jaggers CH, Michaels JN, Stacy AM (1990) Chem Mater 2:150

    Article  CAS  Google Scholar 

  3. Soignard E, McMillan PF, Chaplin TD, Farag SM, Bull CL, Somayazulu MS, Leinenweber K (2003) Phys Rev B 68:132101

    Article  Google Scholar 

  4. Lévy F, Hones P, Schmid PE, Sanjinés R, Diserens M, Wiemer C (1999) Sur Coat Technol 120-121:284

    Article  Google Scholar 

  5. Papaconstantopoulos DA (1985) Phys Rev B 31(2):752

    Article  CAS  Google Scholar 

  6. Ihara H, Hirabayashi M, Senzaki K (1985) Phys Rev B 32(3):1816

    Article  CAS  Google Scholar 

  7. Inumaru K, Nishikawa T, Nakamura K, Yamanaka S (2008) Chem Mater 20:4756

    Article  CAS  Google Scholar 

  8. Gajbhiye NS, Ningthoujam RS (2004) Phys Stat Sol (c) 1(12):3449

    Article  CAS  Google Scholar 

  9. Jehn H, Ettmayer P (1978) J Less-Common Met 58:85

    Article  CAS  Google Scholar 

  10. Inumaru K, Baba K, Yamanaka S (2006) Appl Surf Sci 253:2863

    Article  CAS  Google Scholar 

  11. Inumaru K, Baba K, Yamanaka S (2005) Chem Mater 17:5935

    Article  CAS  Google Scholar 

  12. Maoujoud M, Binst L, Delcambe P, Offergeld-Jardinier M, Bouillon F (1992) Surf Coat Technol 52:179

    Article  CAS  Google Scholar 

  13. Bezinge A, Yvon K, Muller J, Lengaeur W, Ettmayer P (1987) Solid State Commun 63:141

    Article  CAS  Google Scholar 

  14. Bull CL, McMillan PF, Soignard E, Leinenweber K (2004) J Solid State Chem 177:1488

    Article  CAS  Google Scholar 

  15. Zhang Y, Haberkorn N, Ronning F (2011) J Am Chem Soc 133:20735

    Article  CAS  Google Scholar 

  16. Wang S, Antonio D, Yu X, Zhang JZ, Cornelius AL, He DW, Zhao YS (2015) Sci Rep 5:13733

    Article  Google Scholar 

  17. Sahu BR, Kleinman L (2004) Phys Rev B 70:073103

    Article  Google Scholar 

  18. Zhao E, Wang J, Wu Z (2010) Phys Status Solidi B 247:1207

    CAS  Google Scholar 

  19. Yu J, Zhang G, Shang Y, Zhang H, Yang L, Zeng T, Liu B, Li Z (2011) Theor Chem Acc 128:285

    Article  CAS  Google Scholar 

  20. Madsen GKH, Blaha P, Schwarz K, Sjöstedt E, Nordström L (2001) Phys Rev B 64:195134

    Article  Google Scholar 

  21. Perdew JP, Burkeand K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  22. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505

    Article  CAS  Google Scholar 

  23. Li Y, Fan W, Sun H, Cheng X, Li P, Zhao X, Jiang M (2010) J Solid State Chem 183:2662

    Article  CAS  Google Scholar 

  24. Yang K, Dai Y, Huang B (2009) Chem Phys Chem 10:2327

    Article  CAS  Google Scholar 

  25. Xu Y, Hao X, Meng J, Zhou D, Gao F (2009) J Phys Condens Matter 21:236006

    Article  Google Scholar 

  26. Wang Y, Puggioni D, Rondinelli JM (2019) Phys Rev B 100:115149

    Article  CAS  Google Scholar 

  27. Blöchl PE, Jepsen O, Andersen OK (1994) Phys Rev B 49:16223

    Article  Google Scholar 

  28. Ng MF, Shen L, Zhou L, Yang SW, Tan VBC (2008) Nano Lett 8:3662

    Article  CAS  Google Scholar 

  29. Taylo J, Guo H, Wang J (2001) Phys Rev B 63:245407

    Article  Google Scholar 

  30. Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K (2002) Phys Rev B 65:165401

    Article  Google Scholar 

  31. Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) J Phys Condens Matter 14:2745

    Article  CAS  Google Scholar 

  32. ATK, atomistix a/s (2008) www.atomistix.com

  33. Cendlewska B, Morawski A, Misiuk A (1987) J Phys F Met Phys 17:L71

    Article  CAS  Google Scholar 

  34. Cantele G, Degoli E, Luppi E, Magri R, Ninno D, Iadonisi G, Ossicini S (2005) Phys Rev B 72:113303

    Article  Google Scholar 

  35. Yang K, Dai Y, Huang B, Whangbo MH (2009) Chem Phys Lett 481:99

    Article  CAS  Google Scholar 

  36. Büttiker M, Imry Y, Landauer R, Pinhas S (1985) Phys Rev B 31:6207

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the supports from the Fundamental Research Funds for the Universities of Heilongjiang province of China (2017-KYYWF-0718), the Foundation for Distinguished Young Scholars of Suihua University (SJ2017003), the Science and Technology Program of Suihua city of China (SHKJ2017-076), the PhD Research Startup Foundation of Suihua University, and the Foundation for Innovative Research Team of Suihua University (SIT04B007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Yu or Guiling Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Wang, K., Qiao, X. et al. Effects of Cr doping in δ-MoN: structural, magnetic and spin transport properties. Theor Chem Acc 139, 123 (2020). https://doi.org/10.1007/s00214-020-02608-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02608-w

Keywords

Navigation