Advertisement

Automatic routing of Goldstone diagrams using genetic algorithms

  • Nils HerrmannEmail author
  • Michael Hanrath
Regular Article
  • 57 Downloads

Abstract

This paper presents an algorithm for an automatic transformation (= routing) of time-ordered topologies of Goldstone diagrams (i.e., Wick contractions) into graphical representations of these topologies. Since there is no hard criterion for an optimal routing, the proposed algorithm minimizes an empirically chosen cost function over a set of parameters. Some of the latter are naturally of discrete type (e.g., interchange of particle/hole lines due to antisymmetry) while others (e.g., xy-position of nodes) are naturally continuous. In order to arrive at a manageable optimization problem, the position space is artificially discretized. In terms of the (1) cost function, (2) the discrete vertex placement, (3) the interchange of particle/hole lines the routing problem is now well defined and fully discrete. However, it shows an exponential complexity with the number of vertices suggesting to apply a genetic algorithm for its solution. The presented algorithm is capable of routing non-trivial (several loops and crossings) Goldstone diagrams from given topologies. The resulting diagrams are qualitatively fully equivalent to manually routed ones. The proposed algorithm is successfully applied to several coupled cluster approaches and a perturbative (fixpoint iterative) CCSD expansion with repeated diagram substitution.

Keywords

Goldstone diagram Diagram routing Genetic algorithm Coupled cluster 

Notes

Supplementary material

214_2019_2505_MOESM1_ESM.pdf (389 kb)
Supplementary material 1 (PDF 390 kb)

References

  1. 1.
    Coester F (1958) Nucl Phys 7:421CrossRefGoogle Scholar
  2. 2.
    Coester F, Kümmel H (1958) Nucl Phys 9:225CrossRefGoogle Scholar
  3. 3.
    Čížek J (1966) J Chem Phys 45:4256CrossRefGoogle Scholar
  4. 4.
    Paldus J, Čížek J (1975) Adv Quantum Chem 9:105CrossRefGoogle Scholar
  5. 5.
    Paldus J (1977) J Chem Phys 67:303CrossRefGoogle Scholar
  6. 6.
    Goldstone J (1957) Proc R Soc Lond Ser A 239:267CrossRefGoogle Scholar
  7. 7.
    Hugenholtz NM (1957) Physica 23:533CrossRefGoogle Scholar
  8. 8.
    Feynman RP (1949) Phys Rev 76(6):769CrossRefGoogle Scholar
  9. 9.
    Paldus J, Wong HC (1973) Comput Phys Commun 6:1CrossRefGoogle Scholar
  10. 10.
    Csepes Z, Pipek J (1988) J Comput Phys 77:1CrossRefGoogle Scholar
  11. 11.
    Lyons J, Moncrieff D, Wilson S (1994) Comput Phys Commun 84:91CrossRefGoogle Scholar
  12. 12.
    Derevianko A, Emmons ED (2002) Phys Rev A 66:012503CrossRefGoogle Scholar
  13. 13.
    Mathar RJ (2007) Int J Quantum Chem 107:1975CrossRefGoogle Scholar
  14. 14.
    Wick GC (1950) Phys Rev 80:268CrossRefGoogle Scholar
  15. 15.
    Kállay M, Surján PR (2001) J Chem Phys 115:2945CrossRefGoogle Scholar
  16. 16.
    Harris FE (1999) Int J Quantum Chem 75:593CrossRefGoogle Scholar
  17. 17.
    Dzuba VA (2009) Comput Phys Commun 180:392CrossRefGoogle Scholar
  18. 18.
    Hanrath M (2007) Equivalence class decomposition of contraction patterns in Wick’s theorem exploiting tensor anti-symmetry: application to three-body terms (unpublished results)Google Scholar
  19. 19.
    Hanrath M (2008) A general and efficient diagrammatic term simplification engine: evaluation of the wave function variance (unpublished results)Google Scholar
  20. 20.
    Hanrath M (2019) Diag2PS—a text driven diagram assembling tool based on PSTricks. www.tc.uni-koeln.de/people/hanrath/Interactive/Diag2PS. Accessed 11 Sept 2019
  21. 21.
    Shavitt I, Bartlett RJ (2009) Many-body methods in chemistry and physics—MBPT and coupled-cluster theory. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  22. 22.
    Harris FE, Monkhorst HJ, Freeman DL (1992) Algebraic and diagrammatic methods in many-Fermion theory. Oxford University Press Inc, OxfordGoogle Scholar
  23. 23.
    Crawford TD, Schaefer HF III (2000) Rev Comput Chem 14:33Google Scholar
  24. 24.
    Baker H (1902) Proc Lond Math Soc 34(1):347CrossRefGoogle Scholar
  25. 25.
    Campbell J (1897) Proc Lond Math Soc 28:381Google Scholar
  26. 26.
    Hausdorff F (1906) Berl Verh Sächs Akad Wiss Leipz 58:19Google Scholar
  27. 27.
    Holland JH (1975) Adaption in natural and artificial systems. University of Michigan Press, Ann ArborGoogle Scholar
  28. 28.
    Kumar M, Husian M, Upreti N, Gupta D (2010) Int J Inf Technol Knowl Manag 2(2):451Google Scholar
  29. 29.
    Engels-Putzka A, Hanrath M (2011) J Chem Phys 134:124106CrossRefGoogle Scholar
  30. 30.
    Hanrath M, Engels-Putzka A (2010) J Chem Phys 133:064108CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Theoretical ChemistryUniversity of CologneCologneGermany

Personalised recommendations