QCT study of the vibrational and translational role in the H + C2H6(ν1, ν2, ν5, ν7, ν9 and ν10) reactions

  • J. Espinosa-GarciaEmail author
  • J. Calle-Cancho
  • J. C. Corchado
Regular Article


Two important issues were analysed in the title reaction: the effects of vibrational excitation, associated with mode selectivity, and the role of translational energy, associated with Polanyi’s rules. Based on a global analytical potential energy surface, PES-2018, recently developed in our group, quasi-classical trajectory (QCT) calculations were performed at total energy of 35 kcal mol−1, either as translation or as a combination of translation and vibration energy. Independent vibrational excitation by one quantum of any of the CH3 stretching modes in ethane leads to similar dynamics pictures of reaction cross sections and H2(v′, j′) rotovibrational and scattering distributions, ruling out mode selectivity. Normal mode analysis showed a cold, non-inverted, H2(v′) product vibrational distribution, while the C2H5(v′) co-product presented many vibrational states, all of them with a low population, practically simulating a classical behaviour. An equivalent amount of energy as translation raises reactivity somewhat less effective than vibrational energy, contrary to that found for the O(3P) + CH4 reaction. Both reactions present “central” barriers, so this opposite behaviour shows the difficulties for a straightforward application of the Polanyi′s rules. The role of vibrational and translational energy on dynamics has been rationalized by the coupling between vibrational modes, which makes analysis of vibrational excitation difficult in polyatomic systems. Finally, the role of the total energy on reactivity and mode selectivity was analysed, concluding that at lower energy, 15 kcal mol−1, translational energy is much more effective than vibrational energy to enhance reactivity, while at intermediate energy, 20 kcal mol−1, the situation is more confusing and strongly dependent on the counting methods used in the QCT calculations. Therefore, very small mode selectivity is found, and translation seems to be more effective in enhancing reactivity than vibration at low collision energies, while this behaviour is reversed as we increase the collision energy, being the turning point around 20 kcal mol−1.


Vibrational excitation Central barrier reaction Potential energy surface Theoretical study 



This work was partially supported by Junta de Extremadura and European Regional Development Fund, Spain (Project Nos. GR18010 and IB16013).


  1. 1.
    Espinosa-Garcia J, Garcia-Chamorro M, Corchado JC (2019) Phys Chem Chem Phys 21:13165CrossRefGoogle Scholar
  2. 2.
    Espinosa-Garcia J, Corchado JC (2019) Phys Chem Chem Phys 21:13305Google Scholar
  3. 3.
    Polanyi JC (1972) Acc Chem Res 5:161CrossRefGoogle Scholar
  4. 4.
    Corchado JC, Espinosa-Garcia J (2009) Phys Chem Chem Phys 11:10157CrossRefGoogle Scholar
  5. 5.
    Fermi E (1931) Z Phys 71:250CrossRefGoogle Scholar
  6. 6.
    Amat G, Pimbert M (1965) J Mol Spectrosc 16:278CrossRefGoogle Scholar
  7. 7.
    Porter RN, Raff LM (1976) In: Miller WH (ed) Dynamics of molecular collisions, Part B. Plenum Press, New YorkGoogle Scholar
  8. 8.
    Truhlar DG, Muckerman JT (1979) In: Bernstein RB (ed) Atom-molecules collision theory. Plenum Press, New YorkGoogle Scholar
  9. 9.
    Raff LM, Thompson DL (1985) In: Baer M (ed) Theory of chemical reaction dynamics, vol. 3. CRC Press, Boca RatonGoogle Scholar
  10. 10.
    Hu X, Hase WL, Pirraglia Y (1991) J Comput Chem 12:1014CrossRefGoogle Scholar
  11. 11.
    Hase WL, Duchovic RJ, Hu X, Komornicki A, Lim KF, Lu D-H, Peslherbe GH, Swamy KN, Van de Linde SR, Varandas AJC, Wang H, Wolf RJ (1996) QCPE Bull. 16:43Google Scholar
  12. 12.
    Espinosa-Garcia J (2009) J Chem Phys 130:054305CrossRefGoogle Scholar
  13. 13.
    Ping L, Tian L, Song H, Yang M (2018) J Phys Chem A 122:6997CrossRefGoogle Scholar
  14. 14.
    Bonnet L (2013) Int Rev Phys Chem 32:171CrossRefGoogle Scholar
  15. 15.
    Czako G, Bowman JM (2009) J Chem Phys 131:244302CrossRefGoogle Scholar
  16. 16.
    Bonnet L, Espinosa-Garcia J (2010) J Chem Phys 133:164108CrossRefGoogle Scholar
  17. 17.
    Kudla K, Schatz GC (1993) Chem Phys 175:71CrossRefGoogle Scholar
  18. 18.
    Bethardy GA, Wagner AF, Schatz GC, ter Horst MA (1997) J Chem Phys 106:6001CrossRefGoogle Scholar
  19. 19.
    Truhlar DG, Blais NC (1977) J Chem Phys 67:1532CrossRefGoogle Scholar
  20. 20.
    Camden JP, Bechtel HA, Brown DJA, Zare RN (2005) J Chem Phys 123:134301CrossRefGoogle Scholar
  21. 21.
    Jordan MJT, Gilbert RG (1995) J Chem Phys 102:5669CrossRefGoogle Scholar
  22. 22.
    Rudić S, Murray C, Harvey JN, Orr-Ewing AJ (2004) J Chem Phys 120:186CrossRefGoogle Scholar
  23. 23.
    Chakraborty A, Zhao Y, Lin H, Truhlar DG (2006) J Chem Physcs 124:044315CrossRefGoogle Scholar
  24. 24.
    Hu W, Lendvay G, Troya D, Martin MR, Zare RN (2006) J Phys Chem A 110:3017CrossRefGoogle Scholar
  25. 25.
    Layfield JP, Owens MD, Troya D (2008) J Chem Phys 128:94302CrossRefGoogle Scholar
  26. 26.
    Greaves SJ, Orr-Ewing AJ, Troya D (2008) J Phys Chem A 112:9387CrossRefGoogle Scholar
  27. 27.
    Corchado JC, Bravo JL, Espinosa-Garcia J (2009) J Chem Phys 130:184314CrossRefGoogle Scholar
  28. 28.
    Miller WH, Handy NC, Adams JE (1980) J Chem Phys 72:99CrossRefGoogle Scholar
  29. 29.
    Zheng J, Zhang S, Lynch BJ, Corchado JC, Chuang Y-Y, Fast PL, Hu W-P, Liu Y-P, Lynch GC, Nguyen KA, Truhlar DG (2010) POLYRATE-2010-A. University of Minnesota, Minneapolis, MNGoogle Scholar
  30. 30.
    Kraka E, Dunning TH (1990) In: Advances in molecular electronic structure theory, vol 1, JAI, New York, p 129Google Scholar
  31. 31.
    Song H, Li J, Jiang B, Yang M, Lu Y, Guo H (2014) J Chem Phys 140:084307. CrossRefPubMedGoogle Scholar
  32. 32.
    Jiang B, Guo H (2013) J Am Chem Soc 135:15251CrossRefGoogle Scholar
  33. 33.
    Li J, Guo H (2014) J Phys Chem A 118:2419CrossRefGoogle Scholar
  34. 34.
    Jiang B, Guo H (2013) J Chem Phys 138:234104CrossRefGoogle Scholar
  35. 35.
    Jiang B, Guo H (2014) J Chin Chem Soc 61:847CrossRefGoogle Scholar
  36. 36.
    Kang WK, Jung KW, Kim D-Ch, Jung K-H, Im H-S (1995) Chem Phys 196:363CrossRefGoogle Scholar
  37. 37.
    Zhu Q, Cao JR, Wen Y, Zhang J, Zhang X, Huang Y, Fang W, Wu X (1988) Chem Phys Lett 144:486CrossRefGoogle Scholar
  38. 38.
    Chakravorty KK, Bernstein RB (1984) J Phys Chem 88:3465CrossRefGoogle Scholar
  39. 39.
    Mackay RS, Xu Q-X, Aoiz FJ, Bernstein RB (1991) J Phys Chem 95:8226CrossRefGoogle Scholar
  40. 40.
    Germann GJ, Huh YD, Valentini JJ (1991) Chem Phys Lett 183:353CrossRefGoogle Scholar
  41. 41.
    Germann GJ, Huh YD, Valentini JJ (1992) J Chem Phys 96:1957CrossRefGoogle Scholar
  42. 42.
    Germann GJ, Huh YD, Valentini JJ (1992) J Chem Phys 96:5746CrossRefGoogle Scholar
  43. 43.
    Espinosa-Garcia J, Corchado JC (2015) Theor Chem Acc 134:6CrossRefGoogle Scholar
  44. 44.
    Bonnet L, Corchado JC, Espinosa-Garcia J (2016) C R Chim 19:571CrossRefGoogle Scholar
  45. 45.
    Espinosa-Garcia J, Garcia-Chamorro M (2018) Phys Chem Chem Phys 20:26634CrossRefGoogle Scholar
  46. 46.
    Rangel C, Corchado JC, Espinosa-Garcia J (2006) J Phys Chem A 110:10375CrossRefGoogle Scholar
  47. 47.
    Zhang B, Liu K (2005) J Phys Chem A 109:6791CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Quimica Fisica and Instituto de Computacion Cientifica Avanzada de ExtremaduraUniversidad de ExtremaduraBadajozSpain
  2. 2.Centro Extremeño de InvestigaciónInnovación Tecnológica y Supercomputación (CénitS)CáceresSpain

Personalised recommendations