Skip to main content
Log in

QCT study of the vibrational and translational role in the H + C2H6(ν1, ν2, ν5, ν7, ν9 and ν10) reactions

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Two important issues were analysed in the title reaction: the effects of vibrational excitation, associated with mode selectivity, and the role of translational energy, associated with Polanyi’s rules. Based on a global analytical potential energy surface, PES-2018, recently developed in our group, quasi-classical trajectory (QCT) calculations were performed at total energy of 35 kcal mol−1, either as translation or as a combination of translation and vibration energy. Independent vibrational excitation by one quantum of any of the CH3 stretching modes in ethane leads to similar dynamics pictures of reaction cross sections and H2(v′, j′) rotovibrational and scattering distributions, ruling out mode selectivity. Normal mode analysis showed a cold, non-inverted, H2(v′) product vibrational distribution, while the C2H5(v′) co-product presented many vibrational states, all of them with a low population, practically simulating a classical behaviour. An equivalent amount of energy as translation raises reactivity somewhat less effective than vibrational energy, contrary to that found for the O(3P) + CH4 reaction. Both reactions present “central” barriers, so this opposite behaviour shows the difficulties for a straightforward application of the Polanyi′s rules. The role of vibrational and translational energy on dynamics has been rationalized by the coupling between vibrational modes, which makes analysis of vibrational excitation difficult in polyatomic systems. Finally, the role of the total energy on reactivity and mode selectivity was analysed, concluding that at lower energy, 15 kcal mol−1, translational energy is much more effective than vibrational energy to enhance reactivity, while at intermediate energy, 20 kcal mol−1, the situation is more confusing and strongly dependent on the counting methods used in the QCT calculations. Therefore, very small mode selectivity is found, and translation seems to be more effective in enhancing reactivity than vibration at low collision energies, while this behaviour is reversed as we increase the collision energy, being the turning point around 20 kcal mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Espinosa-Garcia J, Garcia-Chamorro M, Corchado JC (2019) Phys Chem Chem Phys 21:13165

    Article  Google Scholar 

  2. Espinosa-Garcia J, Corchado JC (2019) Phys Chem Chem Phys 21:13305

    Google Scholar 

  3. Polanyi JC (1972) Acc Chem Res 5:161

    Article  CAS  Google Scholar 

  4. Corchado JC, Espinosa-Garcia J (2009) Phys Chem Chem Phys 11:10157

    Article  CAS  Google Scholar 

  5. Fermi E (1931) Z Phys 71:250

    Article  CAS  Google Scholar 

  6. Amat G, Pimbert M (1965) J Mol Spectrosc 16:278

    Article  CAS  Google Scholar 

  7. Porter RN, Raff LM (1976) In: Miller WH (ed) Dynamics of molecular collisions, Part B. Plenum Press, New York

  8. Truhlar DG, Muckerman JT (1979) In: Bernstein RB (ed) Atom-molecules collision theory. Plenum Press, New York

  9. Raff LM, Thompson DL (1985) In: Baer M (ed) Theory of chemical reaction dynamics, vol. 3. CRC Press, Boca Raton

  10. Hu X, Hase WL, Pirraglia Y (1991) J Comput Chem 12:1014

    Article  CAS  Google Scholar 

  11. Hase WL, Duchovic RJ, Hu X, Komornicki A, Lim KF, Lu D-H, Peslherbe GH, Swamy KN, Van de Linde SR, Varandas AJC, Wang H, Wolf RJ (1996) QCPE Bull. 16:43

    Google Scholar 

  12. Espinosa-Garcia J (2009) J Chem Phys 130:054305

    Article  Google Scholar 

  13. Ping L, Tian L, Song H, Yang M (2018) J Phys Chem A 122:6997

    Article  CAS  Google Scholar 

  14. Bonnet L (2013) Int Rev Phys Chem 32:171

    Article  CAS  Google Scholar 

  15. Czako G, Bowman JM (2009) J Chem Phys 131:244302

    Article  Google Scholar 

  16. Bonnet L, Espinosa-Garcia J (2010) J Chem Phys 133:164108

    Article  CAS  Google Scholar 

  17. Kudla K, Schatz GC (1993) Chem Phys 175:71

    Article  CAS  Google Scholar 

  18. Bethardy GA, Wagner AF, Schatz GC, ter Horst MA (1997) J Chem Phys 106:6001

    Article  CAS  Google Scholar 

  19. Truhlar DG, Blais NC (1977) J Chem Phys 67:1532

    Article  CAS  Google Scholar 

  20. Camden JP, Bechtel HA, Brown DJA, Zare RN (2005) J Chem Phys 123:134301

    Article  Google Scholar 

  21. Jordan MJT, Gilbert RG (1995) J Chem Phys 102:5669

    Article  CAS  Google Scholar 

  22. Rudić S, Murray C, Harvey JN, Orr-Ewing AJ (2004) J Chem Phys 120:186

    Article  Google Scholar 

  23. Chakraborty A, Zhao Y, Lin H, Truhlar DG (2006) J Chem Physcs 124:044315

    Article  Google Scholar 

  24. Hu W, Lendvay G, Troya D, Martin MR, Zare RN (2006) J Phys Chem A 110:3017

    Article  CAS  Google Scholar 

  25. Layfield JP, Owens MD, Troya D (2008) J Chem Phys 128:94302

    Article  Google Scholar 

  26. Greaves SJ, Orr-Ewing AJ, Troya D (2008) J Phys Chem A 112:9387

    Article  CAS  Google Scholar 

  27. Corchado JC, Bravo JL, Espinosa-Garcia J (2009) J Chem Phys 130:184314

    Article  Google Scholar 

  28. Miller WH, Handy NC, Adams JE (1980) J Chem Phys 72:99

    Article  CAS  Google Scholar 

  29. Zheng J, Zhang S, Lynch BJ, Corchado JC, Chuang Y-Y, Fast PL, Hu W-P, Liu Y-P, Lynch GC, Nguyen KA, Truhlar DG (2010) POLYRATE-2010-A. University of Minnesota, Minneapolis, MN

    Google Scholar 

  30. Kraka E, Dunning TH (1990) In: Advances in molecular electronic structure theory, vol 1, JAI, New York, p 129

  31. Song H, Li J, Jiang B, Yang M, Lu Y, Guo H (2014) J Chem Phys 140:084307. https://doi.org/10.1063/1.4866426

    Article  CAS  PubMed  Google Scholar 

  32. Jiang B, Guo H (2013) J Am Chem Soc 135:15251

    Article  CAS  Google Scholar 

  33. Li J, Guo H (2014) J Phys Chem A 118:2419

    Article  CAS  Google Scholar 

  34. Jiang B, Guo H (2013) J Chem Phys 138:234104

    Article  Google Scholar 

  35. Jiang B, Guo H (2014) J Chin Chem Soc 61:847

    Article  CAS  Google Scholar 

  36. Kang WK, Jung KW, Kim D-Ch, Jung K-H, Im H-S (1995) Chem Phys 196:363

    Article  CAS  Google Scholar 

  37. Zhu Q, Cao JR, Wen Y, Zhang J, Zhang X, Huang Y, Fang W, Wu X (1988) Chem Phys Lett 144:486

    Article  CAS  Google Scholar 

  38. Chakravorty KK, Bernstein RB (1984) J Phys Chem 88:3465

    Article  CAS  Google Scholar 

  39. Mackay RS, Xu Q-X, Aoiz FJ, Bernstein RB (1991) J Phys Chem 95:8226

    Article  CAS  Google Scholar 

  40. Germann GJ, Huh YD, Valentini JJ (1991) Chem Phys Lett 183:353

    Article  CAS  Google Scholar 

  41. Germann GJ, Huh YD, Valentini JJ (1992) J Chem Phys 96:1957

    Article  CAS  Google Scholar 

  42. Germann GJ, Huh YD, Valentini JJ (1992) J Chem Phys 96:5746

    Article  CAS  Google Scholar 

  43. Espinosa-Garcia J, Corchado JC (2015) Theor Chem Acc 134:6

    Article  Google Scholar 

  44. Bonnet L, Corchado JC, Espinosa-Garcia J (2016) C R Chim 19:571

    Article  CAS  Google Scholar 

  45. Espinosa-Garcia J, Garcia-Chamorro M (2018) Phys Chem Chem Phys 20:26634

    Article  CAS  Google Scholar 

  46. Rangel C, Corchado JC, Espinosa-Garcia J (2006) J Phys Chem A 110:10375

    Article  CAS  Google Scholar 

  47. Zhang B, Liu K (2005) J Phys Chem A 109:6791

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Junta de Extremadura and European Regional Development Fund, Spain (Project Nos. GR18010 and IB16013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Espinosa-Garcia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinosa-Garcia, J., Calle-Cancho, J. & Corchado, J.C. QCT study of the vibrational and translational role in the H + C2H6(ν1, ν2, ν5, ν7, ν9 and ν10) reactions. Theor Chem Acc 138, 116 (2019). https://doi.org/10.1007/s00214-019-2504-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2504-4

Keywords

Navigation