Advertisement

CO2 induced swing effect at imidazolate of zeolitic imidazolate framework-90 using molecular simulations

  • T. Ploymeerusmee
  • S. Fritzsche
  • S. HannongbuaEmail author
  • T. ChokbunpiamEmail author
Regular Article
  • 44 Downloads

Abstract

The influence of adsorbed CO2 molecules on the lattice structure of ZIF-90 has been examined. Parameters verified by adsorption simulations have been used. Two lattice structures corresponding to so-called gate opening can be observed depending upon the amount of adsorbed guest molecules and the temperature. A transition region has been found in which both of the structures appear temporarily leading to broad statistical distributions of window diameters. Diameters up to 4.43 Å are found. An increased window diameter is observed at high temperature even for the empty lattice.

Keywords

Zeolitic imidazolate framework-90 (ZIF-90) Gate opening CO2 Adsorption Diffusion Molecular simulations 

Notes

Acknowledgements

Authors thank Malaysia-Thailand Joint Authority (MTJA) Research Cess Fund (RCF) and Thailand Research Fund and Office of the Higher Education Commission (MRG 6180001) for financial support. T.C. would like to thank Center of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education (OHEC) Research and Development Institute Ramkhamhaeng University for support and also thank ASEAN-European Academic University Network (ASEA-UNINET) in Austria for giving a chance to visit and use computer time and facilities and hospitality at Vienna Scientific Cluster (VSC2) by Prof. Dr. Peter Wolschann.

Supplementary material

214_2019_2501_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1480 kb)

References

  1. 1.
    Morris W et al (2008) Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks. J Am Chem Soc 130(38):12626–12627CrossRefGoogle Scholar
  2. 2.
    Seehamart K et al (2010) Investigating the reasons for the significant influence of lattice flexibility on self-diffusivity of ethane in Zn(tbip). Microporous Mesoporous Mater 130(1):92–96CrossRefGoogle Scholar
  3. 3.
    Haldoupis E et al (2012) Quantifying large effects of framework flexibility on diffusion in MOFs: CH4 and CO2 in ZIF-8. ChemPhysChem 13(15):3449–3452CrossRefGoogle Scholar
  4. 4.
    Hertäg L et al (2011) Diffusion of CH4 and H2 in ZIF-8. J Membr Sci 377(1):36–41CrossRefGoogle Scholar
  5. 5.
    Chokbunpiam T et al (2017) Importance of ZIF-90 lattice flexibility on diffusion, permeation, and lattice structure for an adsorbed H2/CH4 gas mixture: a re-examination by gibbs ensemble monte carlo and molecular dynamics simulations. J Phys Chem C 121(19):10455–10462CrossRefGoogle Scholar
  6. 6.
    Fairen-Jimenez D et al (2011) Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J Am Chem Soc 133(23):8900–8902CrossRefGoogle Scholar
  7. 7.
    Chokbunpiam T et al (2013) The importance of lattice flexibility for the migration of ethane in ZIF-8: molecular dynamics simulations. Microporous Mesoporous Mater 174:126–134CrossRefGoogle Scholar
  8. 8.
    Chokbunpiam T et al (2016) Gate opening effect for carbon dioxide in ZIF-8 by molecular dynamics—confirmed, but at high CO2 pressure. Chem Phys Lett 648:178–181CrossRefGoogle Scholar
  9. 9.
    Hobday CL et al (2018) Tuning the swing effect by chemical functionalization of zeolitic imidazolate frameworks. J Am Chem Soc 140(1):382–387CrossRefGoogle Scholar
  10. 10.
    Aguado S et al (2011) Guest-induced gate-opening of a zeolite imidazolate framework. New J Chem 35(3):546–550CrossRefGoogle Scholar
  11. 11.
    Schierz P et al (2015) MD simulations of hydrogen diffusion in ZIF-11 with a force field fitted to experimental adsorption data. Microporous Mesoporous Mater 203:132–138CrossRefGoogle Scholar
  12. 12.
    Chokbunpiam T et al (2016) Gate opening, diffusion, and adsorption of CO2 and N2 mixtures in ZIF-8. J Phys Chem C 120(41):23458–23468CrossRefGoogle Scholar
  13. 13.
    Phuong VT et al (2016) Methane in zeolitic imidazolate framework ZIF-90: adsorption and diffusion by molecular dynamics and Gibbs ensemble Monte Carlo. Microporous Mesoporous Mater 235:69–77CrossRefGoogle Scholar
  14. 14.
    Pongsajanukul P et al (2017) Theoretical study of carbon dioxide adsorption and diffusion in MIL-127(Fe) metal organic framework. Chem Phys 491:118–125CrossRefGoogle Scholar
  15. 15.
    Chokbunpiam T et al (2018) Molecular simulations of a CO2/CO mixture in MIL-127. Chem Phys Lett 696:86–91CrossRefGoogle Scholar
  16. 16.
    Liu D et al (2013) Experimental and molecular simulation studies of CO2 adsorption on zeolitic imidazolate frameworks: ZIF-8 and amine-modified ZIF-8. Adsorption 19(1):25–37CrossRefGoogle Scholar
  17. 17.
    Murthy CS, Singer K, McDonald IR (1981) Interaction site models for carbon dioxide. Mol Phys 44(1):135–143CrossRefGoogle Scholar
  18. 18.
    Potoff JJ, Siepmann JI (2001) Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J 47(7):1676–1682CrossRefGoogle Scholar
  19. 19.
    Zheng B et al (2012) Force field for molecular dynamics computations in flexible ZIF-8 framework. J Phys Chem C 116(1):933–938CrossRefGoogle Scholar
  20. 20.
    van Gunsteren Wilfred F, Berendsen Herman JC (1990) Computer simulation of molecular dynamics: methodology, applications, and perspectives in chemistry. Angew Chem Int Ed Engl 29(9):992–1023CrossRefGoogle Scholar
  21. 21.
    Fennell CJ, Gezelter JD (2006) Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. J Chem Phys 124(23):234104CrossRefGoogle Scholar
  22. 22.
    Venkatasubramanian A et al (2012) Gas adsorption characteristics of metal-organic frameworks via quartz crystal microbalance techniques. J Phys Chem C 116(29):15313–15321CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Petrochemistry and Polymer Sciences Program, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  2. 2.Institute of Theoretical Physics, Faculty of Physics and Earth SciencesUniversity of LeipzigLeipzigGermany
  3. 3.Computational Chemistry Unit Cell (CCUC), Department of Chemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  4. 4.Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of ScienceRamkhamhaeng UniversityBangkokThailand

Personalised recommendations