Skip to main content
Log in

Static polarizability and hyperpolarizability in atoms and molecules through a Cartesian-grid DFT

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Static electric response properties of atoms and molecules are reported within the real-space Cartesian-grid implementation of pseudopotential Kohn–Sham density functional theory. A detailed systematic investigation is made for a representative set of atoms and molecules, through a number of properties like total ground-state electronic energies, permanent dipole moment (\(\varvec{\mu }\)), static average dipole polarizability (\(\overline{\alpha }\)). This is further extended to first hyperpolarizability (\(\varvec{\beta }\)) in molecules. It employs a recently developed non-uniform grid-optimization technique, with a suitably chosen fixed initial applied field. A simple variant of the finite-field method, using a rational function fit to the dipole moment with respect to electric field, is adopted. We make use of Labello–Ferreira–Kurtz basis set, which has performed quite well in these scenarios. To assess the efficacy and feasibility, four XC functionals such as LDA, BLYP, PBE and LBVWN are chosen. The present results are compared with available literature (both theoretical and experimental) values, whenever possible. In all instances, they show excellent agreement with the respective atom-centered-grid results, very widely used in many quantum chemistry programs. This demonstrates a viable alternative toward accurate prediction of response properties of many-electron systems in Cartesian coordinate grid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  2. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  3. Guliamov O, Kronik L (2007) J Phys Chem A 111:2028

    Article  PubMed  CAS  Google Scholar 

  4. Becke AD (2014) J Chem Phys 140:18A301

    Article  PubMed  Google Scholar 

  5. Jones RO (2015) Rev Mod Phys 87:897

    Article  Google Scholar 

  6. Maroulis G (ed) (2006) Atoms, molecules and clusters in electric fields: theoretical approaches to the calculation of electric polarizability. Imperial College Press, London

    Google Scholar 

  7. Champagne B (2010) In: Springborg M (ed) Specialist periodical reports: chemical modelling, applications and theory, vol 6, 7. Royal Society of Chemistry, London

    Google Scholar 

  8. Ei Ghazaly MOA, Svendsen A, Bluhme H, Nielsen SB, Andersen LH (2005) Chem Phys Lett 405:278

    Article  Google Scholar 

  9. Kümmel S, Kronik L (2006) Comput Mater Sci 35:321

    Article  Google Scholar 

  10. Fournier R (1993) J Chem Phys 210:261

    Google Scholar 

  11. Colwell SM, Murray CW, Handy NC, Amos RD (1993) Chem Phys Lett 210:261

    Article  CAS  Google Scholar 

  12. Jansik B, Salek P, Jonsson D, Vahtras O, Ågren H (2005) J Chem Phys 122:054107

    Article  Google Scholar 

  13. Helgaker T, Coriani S, Jørgensen P, Kristensen K, Olsen J, Ruud K (2012) Chem Rev 112:543

    Article  PubMed  CAS  Google Scholar 

  14. Orr BJ, Ward JF (1971) Mol Phys 20:513

    Article  CAS  Google Scholar 

  15. Bishop DM (1994) J Chem Phys 100:6535

    Article  CAS  Google Scholar 

  16. Talman JD (2012) Phys Rev A 86:022519

    Article  Google Scholar 

  17. Flores-Moreno R, Köster AM (2008) J Chem Phys 128:1344015

    Google Scholar 

  18. Carmona-Espíndola J, Flores-Moreno R, Köster AM (2012) Int J Quant Chem 112:3461

    Article  Google Scholar 

  19. Shophy KB, Shedge SV, Pal S (2008) J Phys Chem A 112:11266

    Article  Google Scholar 

  20. Bishop DM, Pipin J (1987) Theor Chim Acta 71:247

    Article  CAS  Google Scholar 

  21. Maroulis G, Thakkar AJ (1988) J Chem Phys 88:7623

    Article  CAS  Google Scholar 

  22. Kurtz HA, Stewart JJP, Dieter KM (1990) J Comput Chem 11:82

    Article  CAS  Google Scholar 

  23. Bulat FA, Toro-Labbe A, Champagne B, Kirtman B, Yang W (2005) J Chem Phys 123:014319

    Article  PubMed  Google Scholar 

  24. Wouters S, Limacher PA, Van Neck D, Ayers PW (2012) J Chem Phys 136:134110

    Article  PubMed  Google Scholar 

  25. de Wergifosse M, Liegeois V, Champagne B (2014) Int J Quant Chem 114:900

    Article  CAS  Google Scholar 

  26. Wouters S, Van Speybroeck V, Van Neck D (2016) J Chem Phys 145:2727

    Article  Google Scholar 

  27. Bishop DM, Solunac SA (1986) Phys Rev Lett 1985:55

    Google Scholar 

  28. Mohammed AAK, Limacher PA, Ayers PW (2017) Chem Phys Lett 682:160

    Article  CAS  Google Scholar 

  29. Patel MHG, Mohammed AAK, Limacher PA, Ayers PW (2017) J Phys Chem A 121:5313

    Article  PubMed  CAS  Google Scholar 

  30. Perdew JP, Zunger A (1981) Phys Rev B 23:5048

    Article  CAS  Google Scholar 

  31. Castet F, Champagne B (2012) J Chem Theory Comput 8:2044

    Article  PubMed  CAS  Google Scholar 

  32. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

  33. Becke AD (1988) J Chem Phys 88:1053

    Article  CAS  Google Scholar 

  34. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  35. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  PubMed  CAS  Google Scholar 

  36. van Leeuwen R, Baerends EJ (1994) Phys Rev A 49:2421

    Article  PubMed  Google Scholar 

  37. Roy AK (2008) Int J Quant Chem 108:837

    Article  CAS  Google Scholar 

  38. Roy AK (2008) Chem Phys Lett 461:142

    Article  CAS  Google Scholar 

  39. Roy AK (2011) J Math Chem 49:1687

    Article  CAS  Google Scholar 

  40. Ghosal A, Roy AK (2016) In: Springborg M, Joswig J-O (eds) Specialist periodical reports: chemical modelling, applications and theory, vol 13. Royal Society of Chemistry, London

    Google Scholar 

  41. Ghosal A, Mandal T, Roy AK (2018) Int J Quant Chem 118:e25708

    Article  Google Scholar 

  42. Miadoková I, Kellö V, Sadlej AJ (1997) Theor Chem Acc 96:166

    Article  Google Scholar 

  43. Labello NP, Ferreira AM, Kurtz HA (2005) J Comput Chem 26:1464

    Article  PubMed  CAS  Google Scholar 

  44. Johnson RD III (ed) (2016) NIST computational chemistry comparisons and benchmark database. NIST Standard Reference Database, Number, Release 18. NIST, Gaithersburg, MD

  45. Obara S, Saika A (1986) J Chem Phys 84:3963

    Article  CAS  Google Scholar 

  46. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Hensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  47. Sadlej AJ (1992) Theor Chim Acta 81:339

    Article  CAS  Google Scholar 

  48. Feller D (1996) J Comput Chem 17:1571

    Article  CAS  Google Scholar 

  49. Frigo M, Johnson SG (2005) IEEE Proceed 216:93

    Google Scholar 

  50. Density Functional Repository (2001) Quantum chemistry group. CCLRC Daresbury Laboratory, Daresbury, Cheshire

    Google Scholar 

  51. Anderson E, Bai Z, Bischof C, Blackford S, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D (2001) LAPACK users’ guide. SIAM, Bangkok

    Google Scholar 

  52. Miller TM, Bederson B (1997) Adv At Mol Phys 13:1

    Google Scholar 

  53. Vasiliev I, Chelikowsky JR (2010) Phys Rev A 82:012502

    Article  Google Scholar 

  54. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439

    Article  CAS  Google Scholar 

  55. Nelson RD Jr, Lide DR, Maryott AA (1967) Selected values of electric dipole moments for molecules in the gas phase. National Standard Reference Data System, New York

    Book  Google Scholar 

  56. Hohm U (2013) J Mol Struct 1054:282

    Article  Google Scholar 

  57. Sekino H, Bartlett RJ (1993) J Chem Phys 98:3022

    Article  CAS  Google Scholar 

  58. Paschoal D, Costa MF, Dos Santos HF (2014) Int J Quant Chem 114:796

    Article  CAS  Google Scholar 

  59. de Wergifosse M, Castet F, Champagne B (2015) J Chem Phys 142:194102

    Article  PubMed  Google Scholar 

  60. Castet F, Bogdan E, Plaquet A, Ducasse L, Champagne B, Rodriguez V (2012) J Chem Phys 136:024506

    Article  PubMed  Google Scholar 

  61. Maroulis G (1991) J Chem Phys 94:1182

    Article  CAS  Google Scholar 

  62. Maroulis G (1992) Chem Phys Lett 195:85

    Article  CAS  Google Scholar 

  63. Shelton DP, Rice JE (1994) Chem Rev 94:3

    Article  CAS  Google Scholar 

  64. Bishop DM, Norman P (1999) J Chem Phys 111:3042

    Article  CAS  Google Scholar 

  65. Maroulis G (1998) J Chem Phys 108:5432

    Article  CAS  Google Scholar 

  66. Dudley JW, Ward JF (1985) J Chem Phys 82:4673

    Article  CAS  Google Scholar 

  67. Fernández B, Coriani S, Rizzo A (1998) Chem Phys Lett 288:677

    Article  Google Scholar 

  68. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51

    Article  CAS  Google Scholar 

  69. Limacher PA, Mikkelsen KV, Lüthi HP (2009) J Chem Phys 130:194114

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

AG thanks UGC for a Senior Research Fellowship. TM very much appreciates a Junior Research fellowship from IISER Kolkata. Financial support from DST SERB, New Delhi, India (sanction order number EMR/2014/000838) is sincerely acknowledged. Constructive comments from anonymous referee have helped in improving the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amlan K. Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, T., Ghosal, A. & Roy, A.K. Static polarizability and hyperpolarizability in atoms and molecules through a Cartesian-grid DFT. Theor Chem Acc 138, 10 (2019). https://doi.org/10.1007/s00214-018-2397-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2397-7

Keywords

Navigation