Skip to main content
Log in

Critical assessment of charge transfer estimates in non-covalent graphene doping

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Non-covalent doping by pure charge transfer complexes is one possible solution to tune at low-cost electronic properties of carbon-based nanostructures, more specifically to enhance their conductivity. Here, we present a thorough density functional theory-based study of charge transfer estimates, by comparing available integration/partitioning scheme of the electronic density in periodic boundary conditions, as well as the influence of the exchange-correlation term, the cornerstone of DFT by testing various exchange-correlation functionals. Our test case is made of a freestanding graphene monolayer in interaction with two prototypical donor/acceptor molecules: TTF and TCNE. These results illustrate the role played by the exact exchange in the description of charge transfer processes, as well as the difference between the density-based and wavefunction-based partitioning schemes used in this study. When using hybrid functionals, charge transfer are usually smaller than when using standard generalized gradient approximations, especially for the donor molecule. In terms of electronic density partitioning schemes, both strategies provide quite similar charge transfers; however, each intra-molecular decomposition presents very distinct features, making the discussion of atomic charge reorganization on the electron/donor molecule highly dependent on the selected partitioning scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666

    Article  CAS  Google Scholar 

  2. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183

    Article  CAS  Google Scholar 

  3. Sarma SD, Adam S, Hwang EH, Rossi E (2011) Electronic transport in two-dimensional graphene. Rev Mod Phys 83(2):407–470

    Article  Google Scholar 

  4. Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065):201–204

    Article  CAS  Google Scholar 

  5. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200

    Article  CAS  Google Scholar 

  6. Liu H, Liu Y, Zhu D (2011) Chemical doping of graphene. J Mat Chem 21(10):3335–3345

    Article  CAS  Google Scholar 

  7. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214

    Article  CAS  Google Scholar 

  8. Dirian K, Herranz MA, Katsukis G, Malig J, Rodríguez-Pérez L, Romero-Nieto C, Strauss V, Martín N, Guldi DM (2013) Low dimensional nanocarbons—chemistry and energy/electron transfer reactions. Chem Sci 4(12):4335–4353

    Article  CAS  Google Scholar 

  9. Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116(9):5464–5519

    Article  CAS  Google Scholar 

  10. Chen W, Chen S, Qi DC, Gao XY, Wee ATS (2007) Surface transfer p-type doping of epitaxial graphene. J Am Chem Soc 129(34):10418–10422

    Article  CAS  Google Scholar 

  11. Voggu R, Das B, Rout CS, Rao CNR (2008) Effects of charge transfer interaction of graphene with electron donor and acceptor molecules examined using Raman spectroscopy and cognate techniques. J Phys Condens Matter 20(47):472204–6

    Article  Google Scholar 

  12. Hu T, Gerber IC (2013) Theoretical study of the interaction of electron donor and acceptor molecules with graphene. J Phys Chem C 117(5):2411–2420

    Article  CAS  Google Scholar 

  13. Chen L, Wang L, Shuai Z, Beljonne D (2013) Energy level alignment and charge carrier mobility in noncovalently functionalized graphene. J Phys Chem Lett 4(13):2158–2165

    Article  CAS  Google Scholar 

  14. Bader RFW (1994) Atoms in molecules: a quantum theory. Inter Ser Monogr Chem. Clarendon Press, Oxford

    Google Scholar 

  15. Manna AK, Pati SK (2009) Tuning the electronic structure of graphene by molecular charge transfer: a computational study. Chem Asian J 4(6):855–860

    Article  CAS  Google Scholar 

  16. Lu YH, Chen W, Feng YP, He PM (2009) Tuning the electronic structure of graphene by an organic molecule. J Phys Chem B 113(1):2–5

    Article  CAS  Google Scholar 

  17. Zhang Y-H, Zhou K-G, Xie K-F, Zeng J, Zhang H-L, Peng Y (2010) Tuning the electronic structure and transport properties of graphene by noncovalent functionalization: effects of organic donor, acceptor and metal atoms. Nanotechnology 21(6):065201–8

    Article  Google Scholar 

  18. Sun JT, Lu YH, Chen W, Feng YP, Wee ATS (2010) Linear tuning of charge carriers in graphene by organic molecules and charge-transfer complexes. Phys Rev B 81(15):176–6

    Google Scholar 

  19. Chi M, Zhao Y-P (2012) First principle study of the interaction and charge transfer between graphene and organic molecules. Comp Mater Sci 56(C):79–84

    Article  CAS  Google Scholar 

  20. Denis PA (2013) Chemical reactivity of electron-doped and hole-doped graphene. J Phys Chem C 117(8):3895–3902

    Article  CAS  Google Scholar 

  21. Kong L, Enders A, Rahman TS, Dowben PA (2014) Molecular adsorption on graphene. J Phys Condens Matter 26(44):443001–28

    Article  Google Scholar 

  22. Denis PA, Iribarne F (2015) Strong N-doped graphene: the case of 4-(1,3-dimethyl-2,3-dihydro-1 H-benzoimidazol-2-yl)phenyl)dimethylamine ( N-DMBI). J Phys Chem C 119(27):15103–15111

    Article  CAS  Google Scholar 

  23. Nishidate K, Yoshimoto N, Chantngarm P, Saito H, Hasegawa M (2016) Tuning the work function of graphene with the adsorbed organic molecules: first-principles calculations. Mol Phys 114(20):2993–2998

    Article  CAS  Google Scholar 

  24. Yang S, Jiang Y, Li S, Liu W (2017) Many-body dispersion effects on the binding of TCNQ and F4-TCNQ with graphene. Carbon 111(C):513–518

    Article  CAS  Google Scholar 

  25. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  26. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  27. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  Google Scholar 

  28. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775

    Article  CAS  Google Scholar 

  29. Klimeš J, Bowler DR, Michaelides A (2010) Chemical accuracy for the van der Waals density functional. J Phys Condens Matter 22(2):022201

    Article  Google Scholar 

  30. Klimeš J, Bowler DR, Michaelides A (2011) Van der Waals density functionals applied to solids. Phys Rev B 83(24):195131

    Article  Google Scholar 

  31. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  32. Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982–9985

    Article  CAS  Google Scholar 

  33. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110(13):6158–6170

    Article  CAS  Google Scholar 

  34. Heyd J, Scuseria GE (2004) Assessment and validation of a screened Coulomb hybrid density functional. J Chem Phys 120:7274

    Article  CAS  Google Scholar 

  35. Heyd J, Peralta JE, Scuseria GE, Martin RL (2005) Energy band gaps and lattice parameters evaluated with the Heyd–Scuseria–Ernzerhof screened hybrid functional. J Chem Phys 123:174101

    Article  Google Scholar 

  36. Paier J, Marsman M, Hummer K, Kresse G, Gerber IC, Ángyán JG (2006) Screened hybrid density functionals applied to solids. J Chem Phys 124(15):154709

    Article  CAS  Google Scholar 

  37. Gerber IC, Ángyán JG (2005) Hybrid functional with separated range. Chem Phys Lett 415:100

    Article  CAS  Google Scholar 

  38. Gerber IC, Ángyán JG, Marsman M, Kresse G (2007) Range separated hybrid density functional with long-range Hartree–Fock exchange applied to solids. J Chem Phys 127(5):054101–10

    Article  Google Scholar 

  39. Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36(3):354–360

    Article  Google Scholar 

  40. Sanville E, Kenny SD, Smith R, Henkelman G (2007) Improved grid-based algorithm for Bader charge allocation. J Comput Chem 28:899–908

    Article  CAS  Google Scholar 

  41. Tang W, Sanville E, Henkelman G (2009) A grid-based Bader analysis algorithm without lattice bias. J Phys Condens Matter 21(8):084204–8

    Article  CAS  Google Scholar 

  42. Wiberg KB, Rablen PR (1993) Comparison of atomic charges derived via different procedures. J Comput Chem 14(12):1504–1518

    Article  CAS  Google Scholar 

  43. Leenaerts O, Partoens B, Peeters FM (2008) Paramagnetic adsorbates on graphene: a charge transfer analysis. Appl Phys Lett 92(24):243125

    Article  Google Scholar 

  44. Deringer VL, Tchougréeff AL, Dronskowski R (2011) Crystal orbital hamilton population (COHP) analysis as projected from plane-wave basis sets. J Phys Chem A 115(21):5461–5466

    Article  CAS  Google Scholar 

  45. Maintz S, Deringer VL, Tchougréeff AL, Dronskowski R (2013) Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J Comput Chem 34(29):2557–2567

    Article  CAS  Google Scholar 

  46. Maintz S, Deringer VL, Tchougréeff AL, Dronskowski R (2016) LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J Comput Chem 37(11):1030–1035

    Article  CAS  Google Scholar 

  47. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  48. Marenich AV, Jerome SV, Cramer CJ, Truhlar DG (2012) Charge model 5: an extension of hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phases. J Chem Theor Comput 8(2):527–541

    Article  CAS  Google Scholar 

  49. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision D.01. Gaussian Inc., Wallingford CT

    Google Scholar 

  50. Lu T, Chen F (2011) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  Google Scholar 

  51. Zheng X, Liu M, Johnson ER, Contreras-García J, Yang W (2012) Delocalization error of density-functional approximations: a distinct manifestation in hydrogen molecular chains. J Chem Phys 137(21):214106

    Article  Google Scholar 

Download references

Acknowledgements

I. C. Gerber and R. Poteau thank the CALMIP initiative for the generous allocation of computational times, through the Project p0812, as well as the GENCI-CINES, GENCI-IDRIS and GENCI-CCRT for the A004096649 Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iann C. Gerber.

Additional information

Published as part of the special collection of articles In Memoriam of János Ángyán.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerber, I.C., Poteau, R. Critical assessment of charge transfer estimates in non-covalent graphene doping. Theor Chem Acc 137, 156 (2018). https://doi.org/10.1007/s00214-018-2365-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2365-2

Keywords

Navigation